• Title/Summary/Keyword: charging density

Search Result 178, Processing Time 0.024 seconds

Investigation on the Effects of Hydrogen Charging on Oxidation Behavior of Ultrahigh-Strength Automotive Steels (초고강도 자동차용 강의 환원정전류인가에 따른 산화 거동 변화 연구)

  • Ha, Heon-Young;Kim, Hye-Jin;Moon, Joonoh;Lee, Tae-Ho;Jo, Hyo-Haeng;Lee, Chang-Geun;Yoo, Byung-Kil;Yang, Won-Seog
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.317-327
    • /
    • 2017
  • The change in the oxidation behavior of three types of B-added ultrahigh strength martensitic steels containing Ti and Nb induced by applying constant cathodic current was investigated. In a 3% NaCl+0.3% $NH_4SCN$ solution, the overall polarization behavior of the three alloys was similar, and degradation of the oxide film was observed in the three alloys after applying constant cathodic current. A significant increase in the anodic current density was observed in the Nb-added alloy, while it was diminished in the Ti-added alloy. Both Ti and Nb alloying decreased the hydrogen overpotential by forming NbC and TiC particles. In addition, the thickest oxide film was formed on the Ti-added alloy, but the addition of Nb decreased the film thickness. Therefore, it was concluded that the remarkable increase in the anodic current density of Nb-added alloy induced by applying constant cathodic current density was attributed to the formation of the thinnest oxide film less protective to hydrogen absorption, and the addition of Ti effectively blocked the hydrogen absorption by forming TiC particles and a relatively thick oxide film.

High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System (에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템)

  • Keum, Moon-Hwan;Jang, Du-Hee;Hong, Sung-Soo;Han, Sang-Kyoo;SaKong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.587-593
    • /
    • 2011
  • A new high power density and low cost Photovoltaic Power Conditioning System (PV PCS) with energy storage system is proposed. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and battery charger/discharger. Despite of the reduced power stage, the proposed system can achieve the same performances of maximum power point tracking and battery charging/discharging as the conventional system. Moreover, the high voltage stress across the link-capacitor can be relieved through the series-connected link-capacitor with the battery. Therefore, a large number of series/parallel-connected link-capacitors can be reduced by 4-times. Especially, when the utility power failure happens, both photovoltaic and battery energies can be supplied to the load with only one power stage. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

Energy Analysis of Constant-Pressure Compressed Air Energy Storage (CAES) Generation System (정압식 압축공기저장(CAES) 발전 시스템 에너지 분석)

  • Kim, Young-Min;Lee, Sun-Youp;Lee, Jang-Hee
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.178-184
    • /
    • 2011
  • Compressed Air Energy Storage (CAES) is a combination of energy storage and generation by storing compressed air using off-peak power for generation at times of peak demand. In general, both charging and discharging of high-pressure vessel are unsteady processes, where the pressure is varying. These varying conditions result in low efficiencies of compression and expansion. In this paper, a new constant-pressure CAES system to overcome the current problem is proposed. An energy analysis of the system based on the concept of exergy was performed to evaluate the energy density and efficiency of the system in comparison with the conventional CAES system. The new constant-pressure CAES system combined with pumped hydro storage requires the smaller cavern with only half of the storage volume for variable-pressure CAES and has a higher efficiency of system.

Comparative Analysis of Wind Power Energy Potential at Two Coastal Locations in Bangladesh

  • Islam, Asif;Rahman, Mohammad Mahmudur;Islam, Mohammad Shariful;Bhattacharya, Satya Sundar;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.288-297
    • /
    • 2015
  • In this study, wind conditions and its energy potential have been assessed by conducting a Weibull analysis of the wind speed data (over the period of 2002-2011) measured from a port city (Mongla) and an isolated island (Sandwip) in Bangladesh. The monthly mean wind speed at Mongla ranged from 1.60 m/s (December) to 2.47 m/s (April). The monthly values of Weibull shape parameter (k) were from 1.27 to 2.53. In addition, the values of the scale parameter (c) and the monthly wind power density ranged from 1.76 to 2.79 m/s and 3.95 to $17.45W/m^2$, respectively. The seasonal mean wind speed data varied from 1.72 (fall) to 2.29 m/s (spring) with the wind power density from 5.33 (fall) to $14.26W/m^2$ (spring). In the case of Sandwip, the results were comparable to those of Mongla, but moderate reductions in all the comparable variables were observed. The wind data results of these two areas have been compared with those of eight other locations in the world with respect to wind power generation scale. According to this comparison, the wind power generation scale for Mongla and Sandwip was adequate for stand-alone small/micro-scale applications such as local household consumption, solar-wind hybrid irrigation pumps, and battery charging.

A Study on Synthetic Method and Material Analysis of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR (Solid SCR용 암모니아 저장물질인 Calcium Ammine Chloride의 합성방법 및 물질분석 연구)

  • Shin, Jong Kook;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-207
    • /
    • 2015
  • Solid materials of ammonia sources with SCR have been considered for the application of lean NOx reduction in automobile industry, to overcome complex problems of liquid urea based SCR. These solid materials produce ammonia gas directly with proper heating and can be packaged by compact size, because of high volumetric ammonia density. Among ammonium salts and metal ammine chlorides, calcium ammine chloride was focused on this paper due to low decomposition temperature. In order to make calcium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonium gas tank, regulator, and sensors. Basic test conditions of charging ammonia gas to anhydrous calcium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials. Synthetic method of calcium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) from simple weight calculations which were confirmed by IC. Also, lab-made calcium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction. To understand material characteristics for lab-made calcium ammine chloride, DA, XRD and FT-IR analysis were performed with published data of literature. From analytical results, water content in lab-made calcium ammine chloride can be discovered and new test procedures of water removal were proposed.

The Electric Characteristics of Asymmetric Hybrid Supercapacitor Modules with Li4Ti5O11 Electrode (Li4Ti5O11 전극을 이용한 비대칭 하이브리드 슈퍼커패시터 전기적 모듈 특성)

  • Maeng, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.357-362
    • /
    • 2017
  • Among the lithium metal oxides for asymmetric hybrid supercapacitor, $Li_4Ti_5O_{12}(LTO)$ is an emerging electrode material as zero-stain material in volume change during the with the charging and discharging processes. The pulverized LTO powder was observed to show the enhanced capacity from 120 mAh/g to 156 mAh/g at C-rate (10, 100 C). Hybrid supercapacitor module(48V, 416F) was fabricated using an asymmetric hybrid capacitor with a capacitance of 7500F. As a result of the measurement of C-rate characteristics, the module shows that the discharge time is drastically reduced at more than 50C, and the ESR and voltage drop characteristics are increased. The energy density and power density were reduced under high C-rate conditions. When designing asymmetric hybrid supercapacitor module, the C-rate and ESR should be considered As a result of measuring the 5 kw UPS, it was discharged at the current of 116A~170A during the discharge in the voltage range of 48V~30V, and the compensation time at discharge was measured to be about 33.2s. Experimental results show that it can be applied to applications related to stabilization of power quality by applying hybrid supercapacitor module.

Development of Tribo-electrostatic Separation Technique for Scale-up Process of Heavy Group Plastic Tailings (고비중(高比重) 종말품(終末品) 폐(廢)플라스틱 대량처리(大量處理)를 위한 마찰하전(摩擦荷電) 정전선별(靜電選別) 기술개발(技術開發))

  • Park, Chul-Hyun;Jeon, Ho-Seok;Baek, Sang-Ho;Kim, Bong-Gon
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.30-38
    • /
    • 2009
  • In this research, we studied the scale-up triboelectrostatic process for separation of PVC from higher gravity fraction of plastic wastes produced from wet gravity separation process. High density polyethylene (HDPE) was found to be the most effective materials for a tribo-charger in the separation of plastic tailings. In a commercial scale triboelelctrostatic separator unit, using the HDPE pipe-line charger, a grade of 99.1% with PET, PS and others and a recovery of 86% was obtained under optimum conditions at over 250 kV/m electric field, a splitter position of -8 cm from the center, and less than 40% relative humidity. The developed unit can process the plastic wastes at a 300 kg/h, and the product can be utilized as RPF or RDF of over grade 2.

Behavior characteristics of hydrogen storage vessel(TYPE 1) under gas pressure and temperature conditions using FEM (유한요소법을 이용한 수소저장용기 TYPE 1의 압력과 온도조건에 의한 거동특성 연구)

  • Cho, Seunghyun;Kim, Young Gyu;Ko, Young Bae;Lee, Il Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.61-69
    • /
    • 2020
  • This paper is a study of the behavior characteristics that occur in the hydrogen storage vessel TYPE 1 according to pressure and temperature conditions by FEM(Finite element method). Von Mises stress (VMS) generated at the highest pressure was compared with Yield strength (YS) of the material for structural safety assessment of the container, and the results of plastic strain energy density (PSED) were analyzed as basic data for life expectancy. According to the analysis results, the safety of the hydrogen gas storage vessel is not ensured due to the occurrence of VMS higher than the yield strength on the bottom of the storage container at a gas pressure of 40 Mpa or higher. In addition, the results of VMS caused by temperature conditions are very low and the behavior by temperature can be ignored. The maximum pressure of VMS/YS below 1 is calculated to be about 30 Mpa, indicating that the hydrogen storage container subject to this paper should be managed with a gas charging pressure of less than 30 Mpa.

Mechanism of Intercalation Compounds in Graphite with Hydrogen Sulfate (I. Study of Intermediate Phase between 2 Stage and 1 Stage in Graphite Hydrogen Sulfate with Anodic Oxidation) (흑연에 황산을 Intercalation 시킬때의 Mechanism 규명 (I. 전기적 산화방법에 의한 Graphite Salts의 중간상에 관한 연구))

  • 고영신;한경석;이풍헌
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.5-8
    • /
    • 1985
  • Graphite has been oxidized to graphite hydrogen sulfate in concentrated $H_2SO_4$. Anodic oxidation and chemical oxidation of graphite in $H_2SO_4$ generally leads to the formation of intercalation compounds of the ionic salt type through incorporation of $H_2SO_4^-$ions and $H_2SO_4$ molecules into the graphite. Several other reactions also accur at various points of the charging cycle. But there is no satisfactory kinetics and mechanism of intercalationin graphite. We have studied them with anodic oxidation and chemical oxidation. We found six distinct phenomena between 2nd stage and 1st stage in chemical oxidation. We examined them in detail by the following in the measurements electrical oxidation. X-ray diffractions UV-Vis spectroscopy density measurements. We could obtained a equation for kinetic according to the reaction rate from this results and mechanism of intercalation between 2nd stage and 1st stage with hydrogen sulfate in graphite. Three thesis were written for the mechanism of intercalation compounds in graphite with hydrogen sulfate ; first thesis is anodic oxidation second thesis is chemical oxidation and definition of transit phase between 2nd etc the third thesis is the kinetic mechanism of intercalation compounds in graphite with Hydrogen sulfate. This thesis is the first paper among three thesis as anodic oxidation.

  • PDF

Study on Vibration Energy Harvesting with Small Coil for Embedded Avian Multimedia Application

  • Nakada, Kaoru;Nakajima, Isao;Hata, Jun-ichi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • We have developed an electromagnetic generator to bury in subcutaneous area or abdominal cavity of the birds. As we can't use a solar battery, it is extremely difficult to supply a power for subcutaneous implantation such as biosensors under the skin due to the darkness environment. We are aiming to test the antigen-antibody reaction to confirm an avian influenza. One solution is a very small generator with the electromagnetic induction coil. We attached the developed coil to chickens and pheasants and recorded the electric potential generated as the chicken walked and the pheasant flew. The electric potential generated with physical simulator is equal to or exceeds the 7 V peak-to-peak at maximum by 560/min of flapping of wings. Even if we account for the junction voltage of the diode (200 mV), efficient charging of the double-layer capacitor is possible with the voltage doubler rectifier. If we increase the voltage, other problems arise, including the high-voltage insulation of the double-layer capacitor. For this reason, we believe the power generated to be sufficient for subcutaneous area of birds. The efficiency, magnetic 2 mm in length and coil 15mm in length, if axial direction is rectified, the magnetic flux density given to the coil could calculated to 7.1 % and generated power average 0.47mW. The improvements in size and wire insulation are expected in the future.