• Title/Summary/Keyword: charge transportation

Search Result 211, Processing Time 0.04 seconds

A ZnO nanowire - Au nanoparticle hybrid memory device (ZnO 나노선 - Au 나노입자 하이브리드 메모리 소자)

  • Kim, Sang-Sig;Yeom, Dong-Hyuk;Kang, Jeong-Min;Yoon, Chang-Joon;Park, Byoung-Jun;Keem, Ki-Hyun;Jeong, Dong-Yuong;Kim, Mi-Hyun;Koh, Eui-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.20-20
    • /
    • 2007
  • Nanowire-based field-effect transistors (FETs) decorated with nanoparticles have been greatly paid attention as nonvolatile memory devices of next generation due to their excellent transportation ability of charge carriers in the channel and outstanding capability of charge trapping in the floating gate. In this work, top-gate single ZnO nanowire-based FETs with and without Au nanoparticles were fabricated and their memory effects were characterized. Using thermal evaporation and rapid thermal annealing processes, Au nanoparticles were formed on an $Al_2O_3$ layer which was semi cylindrically coated on a single ZnO nanowire. The family of $I_{DS}-V_{GS}$ curves for the double sweep of the gate voltage at $V_{DS}$ = 1 V was obtained. The device decorated with nanoparticles shows giant hysterisis loops with ${\Delta}V_{th}$ = 2 V, indicating a significant charge storage effect. Note that the hysterisis loops are clockwise which result from the tunneling of the charge carriers from the nanowire into the nanoparticles. On the other hand, the device without nanoparticles shows a negligible countclockwise hysterisis loop which reveals that the influence of oxide trap charges or mobile ions is negligible. Therefore, the charge storage effect mainly comes from the nanoparticles decorated on the nanowire, which obviously demonstrates that the top-gate single ZnO nanowire-based FETs decorated with Au nanoparticles are the good candidate for the application in the nonvolatile memory devices of next generation.

  • PDF

Fabrication of TiAl alloy by centrifugal casting and its microstructure (원심주조법에 의한 TiAl 합금의 제조 및 미세구조 분석)

  • Ryu, Jeong Ho;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Lee, Jung-Il
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.229-234
    • /
    • 2017
  • In this study, TiAl alloy was fabricated by a centrifugal casting method for turbo charge of automotive. Optimum conditions for defectless morphology using various ceramic mold were investigated. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometer (XRD), optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS), microvickers hardness analyzer (HV). Two kinds of dendrite structures were observed with 4-fold and 6-fold symmetries. The FE-SEM, EDS and HV examinations of the as-cast TiAl showed that the thickness of the oxide layer (${\alpha}$-case) was typically less than $50{\mu}m$.

A Study on Structural Analysis of Color Discerning Device for the Performance Enhance (Color Discerning Device의 구조해석을 통한 성능향상에 대한 연구)

  • Kim, Sung-Hyun;Lee, Kyu-Ho;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.571-576
    • /
    • 2006
  • A Color Discerning Device(CDD) is the equipment to use in Rice Processing Complex(RPC). By use a high-speed charge-coupled device camera, CDD can sorting discolored grain according to light and shade. The existing CDD's driving performance is not so good as overseas machine. Besides, transportation process causes a defect in the mechanism from impact or harmonic excitation or etc. This study is represented the problem of CDD through modal analysis and static analysis by using ANSYS workbench. To analysis the problem of driving condition, devide each part of CDD for performed modal analysis. The problem of driving condition and transportation process solved by carry out modal analysis and static analysis.

  • PDF

Optimal Pricing Rules for Public Transport (최적의 대중교통요금 결정원리)

  • 손의영
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 1990
  • The first-best pricing rule which achieves economic efficiency is to equate price with marginal cost. Since public transport demand is derived from some other demand, the user cost as well as the producer cost are considered in its pricing. The optimal price is derived from a derivative of the total social cost with respect to demand. In case of the bus, if there is enough capacity for demand increase, the optimal price is determined by the marginal producer cost resulting from bus sped decrease and by the marginal user cost resulting from journey time increase. Both are caused by boarding and fare collecting time of an additional passenger. Because of the budget constraints, the marginal cost pricing cannot be applied in practice. Then price discrimination as the second-best pricing is introduced. The Ramsey pricing, to charge different prices for different demand elasticities, and nonuniform prices such as travelcards can be applied. However, there is practical difficulty in implementing these prices because of great informational requirements, the costs of administration and the ease to users.

  • PDF

A Study on Effect of Applying Energy Storage System on SeoulMetro Line 2 (에너지저장시스템의 서울메트로 2호선 적용 효과에 관한 연구)

  • An, Cheon-Heon;Lee, Han-Min;Kim, Gil-Dong;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.966-971
    • /
    • 2009
  • The recent environmental protection trend requires more strict energy saving, therefore every transportation system should reduce energy consumption to the minimum value. High-efficiency operation system, energy saving and CO2 emissions shall be addressed as important issue in railway system. These issues are the most essential factors of railway, compared to major public transportation system. Recently, saving energy in the electric railway system has been studied. For such new energy saving, the Energy storage system is considered for saving energy. Energy saving is possible by efficient use of regenerated energy. Regenerated energy is recycled amongst vehicles by mean of charge and discharge corresponding to powering and braking of electric vehicle operations. This energy saving contributes to cut CO2 to reduce greenhouse gas emissions. Recycling regenerated energy demonstrate significant effect on peak cut of consumption energy in railway substation. Absorption of excess energy avoids regeneration failure due to high traction voltage. This paper presents effects by applying the energy storage system to SeoulMetro Line 2.

  • PDF

Utilization Condition and Effects of HANARO Traffic Card at Pusan Metropolitan City (부산광역시 하나로교통카드 이용실태 및 효과분석에 관한 연구)

  • Lee, W.G.;Go, S.S.;Bae, G.M.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 1998
  • Pusan Metropolitan City has developed 'HANARO Card' system. It is a sort of multi-function card systems which has devised to resolve many traffic problems, to improve public transportation services, to build advanced transit information systems, to encourage reasonable operation of the public transit companies, and to obtain basic informations for devising transportation policies. This study aims at reviewing the systems of 'HANARO Card', analysing the situation of usage of the card, and suggesting some issues for improving the system. Main finding is that the major effects of the introducing HANARO traffic card are convenience (to pay a charge) in using transit, public parking lots, city freeway toll for citizens, and saving in personnel expenses, maintenance expenses for buses, subway and taxi companies. It is also found that HANARO traffic card system needs to be expended to be compatible with other fields of economic activities.

  • PDF

The Influence of Operating Conditions on Fuel Economy of the Hybrid Electric Vehicle (운전조건이 하이브리드 자동차의 연비에 미치는 영향 연구)

  • Lee Youngjae;Kim Gangchul;Pyo Youngdug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.35-40
    • /
    • 2005
  • In the present study, the influence of operating conditions on fuel economy for hybrid electric vehicle was analyzed. In order to accomplish this, vehicle speed, engine speed, battery current and voltage, SOC (state of charge),motor speed and torque, generator speed and torque, engine coolant temperature etc. were measured in real time. The tests were carried out under different driving cycles which are urban and highway cycles, KOREA CITY cycle and on-road driving, and also under various operating conditions such as different initial SOC, with or without regenerative braking etc.. Generally, conventional gasoline engines show a poor fuel economy at stop and go driving, because braking energy is wasted and the engine is operated in low thermal efficiency regions. However, in case of hybrid vehicles, higher fuel economy can be obtained because of utilizing the maximum thermal efficiency regions of engine, idling stop of engine, and regenerative braking etc..

Synthesis and Thermoelectric Properties of the B-Site Substituted SrTiO3 with Vanadium

  • Khan, Tamal Tahsin;Mahmud, Iqbal;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.416-421
    • /
    • 2017
  • V-substituted $SrTiO_3$ thermoelectric oxide materials were fabricated by the conventional solid state reaction method. From X-ray diffraction pattern analysis, it can be clearly seen that almost every vanadium atom incorporated into the $SrTiO_3$ provided charge carriers. The electrical conductivity ${\sigma}$, Seebeck coefficient S, and thermal conductivity k were investigated in a high temperature regime above 1000 K. The addition of vanadium significantly reduced the thermal conductivity and enhanced the Seebeck coefficient, as well as the electrical conductivity, thus enhancing the ZT value. A maximum ZT value of 0.084 at 673 K was observed for the sample with 1.0 mole% of vanadium substitution. In this study, the reason for the enhanced thermoelectric properties via vanadium addition was also investigated.

Development of TP-SD Methodology-based Simulation Models to Improve Multimodal Transport Systems for Sustainable Logistics (지속가능 물류를 위한 TP-SD 방법론 기반의 복합운송체계 시뮬레이션 모델 개발)

  • Jung, Jae-Un;Kim, Hyun-Soo;Choi, Hyung-Rim;Hong, Soon-Goo
    • Korean System Dynamics Review
    • /
    • v.11 no.2
    • /
    • pp.45-75
    • /
    • 2010
  • Today, the logistics industry has played a critical role in national economy activities. The low cost and high efficiency of the logistics industry are meaningful in the improvement of national competitiveness and the logistics industry. However, efficiency of logistics is lower than that of the United States and Japan since most quantities are processed in road transportation in Korea. With regard to this, existing studies expected a saving of social and environmental costs due to a decrease of road transportation as well as improvement of logistics productivity due to bulk transportation through activation of rail and costal transport. For the expectation, the existing multimodal transport systems should be improved first. Therefore it aimed to develop scenario-based simulation models of multimodal transport systems for decision makers in charge of improvement in the logistics area. For model development, this study utilized Thinking Process and System Dynamics(TP-SD) methodology.

  • PDF

Ethylene Production of Packaged Apples under Vibration Stress in Simulated Transportation Environment

  • Jung, Hyun-Mo;You, Young-Ok
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.2
    • /
    • pp.97-101
    • /
    • 2017
  • Fruits are subjected to a variety of vibration stress during the transportation from a production area to markets. Vibration inputs are transmitted from the transporting vehicle through the packaged fruit. And the steady state vibration input may cause serious internal damage of fruit. Product quality of fruits declines by various factors while they are stored right after harvesting and among the substance in charge of post ripening action, ethylene ($C_2H_4$) biosynthesis increases fruits' respiration process after harvesting and decreases storage expectancy. Ethylene production of apples rapidly increases while storage duration becomes longer. This tendency is much clearer for the apples with vibration stress at input acceleration level. When there was no vibration stress, change in ethylene production level of apples are not very large during storage. Ethylene production rates inside the gas collecting container increased significantly ($p{\leq}0.05$) after 24 hours storage, particularly for apples with vibration stress ($0.7{\mu}l/kg{\cdot}hr$ (1st stack), $0.78{\mu}l/kg{\cdot}hr$ (2nd stack), $0.96{\mu}l/kg{\cdot}hr$ (3rd stack)); whereas less ethylene was produced in control apples ($0.18{\mu}l/kg{\cdot}hr$ during storage. Also ethylene production rates of apples according to the stack position were significantly different ($p{\leq}0.05$). The vibration stress clearly accelerated the degradation of apple quality during storage, resulting in increased ethylene production.