• Title/Summary/Keyword: charge simulation

Search Result 754, Processing Time 0.029 seconds

Power Distribution Strategy for Wireless Tram with Hybrid Energy Storage System (하이브리드 에너지 저장장치를 탑재한 무가선 트램의 전력분배전략)

  • Kang, Kyung-Jin;Oh, Yong-Kuk;Lee, Jee-Ho;Yeom, Min-Kyu;Kwak, Jae-Ho;Lee, Hyeong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1615-1621
    • /
    • 2014
  • A wireless tram which runs without catenary and instead uses batteries installed in the tram has been recently researched actively. This paper presents a new method maximizing absorption of regenerative energy of a wireless tram and extending life cycle of the energy storage device in the wireless tram by applying line-optimized charging and discharging scenario. Energy efficiency and life cycle of energy storage system (ESS) are highly dependent on the characteristic of operating conditions. For example, frequent charge and discharge with high power cause the problems that decrease the battery life cycles. Hybrid energy storage system (HESS) is combination of two ESSs which have complementary characteristics to each other. HESS can provide even better functionality and performance than the battery only ESS due to the synergy effect of two ESSs. This paper also provides a power distribution strategy and driving scenarios which increase the life cycle and energy efficiency of the HESS consisting of a battery and an ultra-capacitor. The developed strategy was tested and verified by a hardware-in-the-loop-simulation (HILS) system which emulates the a wireless tram.

An Efficient Femto-cell Scanning Scheme Using Network Assistance in IEEE 802.16e System (IEEE 802.16e 시스템에서 망 지원을 이용한 효율적인 펨토셀 스캐닝 방안)

  • Choi, Jae-In;Nam, Jin-Kyu;Seo, Won-Keyong;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1B
    • /
    • pp.21-28
    • /
    • 2011
  • The femtocell is a miniaturized Base Station (BS) with low-cost and low-power using general broadband access network as backhaul. It is expected not only to improve indoor coverage but also to reduce a service charge. However, in IEEE 802,16e femtocells, when the Mobile Station (MS) scans neighbor BSs for handover, it takes a long time due to too many number of femto BSs. Also the size of the neighbor advertisement message that will be periodically sent by a serving BS is increased as the number of target femto BSs for scanning increases. In this paper, we proposed an efficient femtocell scanning scheme, using a triangulation mechanism and a femto BS monitoring scheme to reduce the number of scanning operations and the size of the neighbor advertisement messages. The proposed scheme can avoid wasting air resources and reduce scanning overheads by minimal scanning operation. The simulation results showed that the proposed scheme could improve scanning performance and avoid wasting air resources, compared with the conventional scheme of the IEEE 802.16e system.

Design of a CMOS PLL with a Current Pumping Algorithm for Clock Syncronization (전류펌핑 알고리즘을 이용한 클락 동기용 CMOS PLL 설계)

  • 성혁준;윤광섭;강진구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.183-192
    • /
    • 2000
  • In this paper, the dual looped CMOS PLL with 3-250MHz input locking range at a single 13.3V is designed. This paper proposed a new PLL architecture with a current pumping algorithm to improve voltage-to-frequencylinearity of VCO(Voltage Controlled Oscillator). The designed VCO operates at a wide frequency range of75.8MHz-lGHz with a high linearity. Also, PFD(Phase frequency Detector) circuit preventing voltage fluctuation of the charge pump with loop filter circuit under the locked condition is designed. The simulation results of the PLL using 0.6 um N-well single poly triple metal CMOS technology illustrate a locking time of 3.5 us, a power dissipation of 92mW at 1GHz operating frequency with 125MHz of input frequency. Measured results show that the phase noise of VCO with V-I converter is -100.3dBc/Hz at a 100kHz offset frequency.

  • PDF

Measurement of Electron-neutral Collision Frequency Using Wave-cutoff Method

  • Yu, Gwang-Ho;Na, Byeong-Geun;Kim, Dae-Ung;Lee, Yun-Seong;Park, Gi-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.234-234
    • /
    • 2011
  • Electron-neutral collision frequency is one of the important parameters in the plasma physics and in industrial plasma engineering. We can understand the momentum, energy, and charge transport properties of the plasma using electron-neutral collision frequency.[1] The wave-cutoff method is a diagnostic method for the electron density measurement, but the cutoff peak value depends on gas pressure. The wave-cutoff signal becomes unclear as increasing gas pressure. The reason of pressure dependence is that the electron-neutral collision disturbs electron motion so that microwave can propagate through plasma at plasma frequency.[2] Using the pressure dependence of wave-cutoff method we can find the electron-neutral collision frequency. At first we tried to confirm this method using well known gas such as Ar. The cutoff signal decrease as increasing gas pressure (the simulation result). The wave-cutoff signal is unclear at a gas pressure of 500 mTorr. (electron density $1.0{\times}10^{10}/cm^3$, electron temperature 1.7 eV, electron -neutral collision frequency~1 GHz). In this condition, the electron-neutral collision frequency is closed to the wave-cutoff frequency.

  • PDF

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

Analysis of Subthreshold Swing for Oxide Thickness and Doping Distribution in DGMOSFET (산화막두께 및 도핑분포에 대한 DGMOSFET의 문턱전압이하 스윙분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2217-2222
    • /
    • 2011
  • In this paper, the relationship of potential and charge distribution in channel for double gate(DG) MOSFET has been derived from Poisson's equation using Gaussian function. The relationship of subthreshold swing and oxide thickness has been investigated according to variables of doping distribution using Gaussian function, i.e. projected range and standard projected deviation, The analytical potential distribution model has been derived from Poisson's equation, and subthreshold swing has been obtained from this model for the change of oxide thickness. The subthreshold swing has been defined as the derivative of gate voltage to drain current and is theoretically minimum of 60 mS/dec, and very important factor in digital application. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the relationship of subthreshold swing and oxide thickness have been analyzed according to the shape of doping distribution.

Analysis of Subthreshold Characteristics for Double Gate MOSFET using Impact Factor based on Scaling Theory (스켈링이론에 가중치를 적용한 DGMOSFET의 문턱전압이하 특성 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2015-2020
    • /
    • 2012
  • The subthreshold characteristics has been analyzed to investigate the effect of two gate in Double Gate MOSFET using impact factor based on scaling theory. The charge distribution of Gaussian function validated in previous researches has been used to obtain potential distribution in Poisson equation. The potential distribution was used to investigate the short channel effects such as threshold voltage roll-off, subthreshold swings and drain induced barrier lowering by varying impact factor for scaling factor. The impact factor of 0.1~1.0 for channel length and 1.0~2.0 for channel thickness are used to fit structural feature of DGMOSFET. The simulation result showed that the subthreshold swings are mostly effected by impact factor but are nearly constant for scaling factors. And threshold voltage roll-off and drain induced barrier lowering are also effected by both impact factor and scaling factor.

A Study on Improving the Performance of the Planting Device of a Vegetable Transplanter

  • Jo, Jin Seok;Okyere, Frank Gyan;Jo, Jae Min;Kim, Hyeon Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.202-210
    • /
    • 2018
  • Purpose: Due to the growing demand for vegetables all year round, the use of vegetable transplanters has become widespread in agricultural production. However, the type of planting device used for the transplanter affects its overall efficiency. Problems such as inaccurate planting angles and inefficiently wide transplanting hole diameters of the planting device has limited the efficient use of some vegetable transplanters. Our goal in this study was to improve the efficiency of the transplanter by analyzing and modifying the linkages of the planting device of a vegetable transplanter. Methods: Because of its widespread usage in Korea, a linkage-type planting device was used for the experiment, which was divided into three parts. In the first part, the physical trajectory of the tranplanter was extracted using a CCD (charge-coupled device) camera and analyzed. In the second part, a simulated trajectory was developed using Recurdyn 3D software. The simulated and actual trajectories were then compared and analyzed. In the third part, based on the results of the comparison, improvements were made on the linkages of the transplanter and a demonstrative exercise was conducted. Finally, in experiment B, the performance was evaluated through an exercise using both the existing and improved planting devices. Results: The results demonstrated that the average planting angle was improved by 4.96 mm, the soil intrusion diameter was improved by 11.30 mm, and the planting depth was improved by 0.68 mm. Conclusion: It was concluded that the efficiency of a vegetable transplanter can be improved by modifying the linkages through simulations and field demonstrations.

Ion Optical Study on the $He^{++}$ Beam Transport System of the SNU 1.5-MV Tandem Van do Graaff Accelerator (SNU 1.5-MV 직렬형 반데그라프 가속기의 $He^{++}$ 빔 소송계에 대한 이온광학적 고찰)

  • Hyen-Cheol JO;Young-Dug BAE;Hae-iLL BAK
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.426-437
    • /
    • 1991
  • The $He^{++}$ beam transport system of the SNU 1.5-MV Tandem Van de Graaff accelerator is analysed by ion optical approach. The program OPTRANS is developed to determine the optimum operating conditions of each ion optical component and to simulate ion beam transport. First order matrix formalism is used and the space charge effect is neglected. Optimum operating conditions for the transport of 0.5~3.0 MeV $He^{++}$ beam are determined by the use of the program OPTRANS. Initial ion beam omittance is assumed to be 0.5$\times$80.0 mm.mrad from the structure of the extraction electrode and the experiment of ion beam extraction. ion beam transport characteristics of each ion optical component according to the variation of the operating conditions are investigated, and operating conditions to minimize the beam size at each slit, stripping foil, and target are calculated. Optimum operating conditions obtained from the experiment of ion beam transport show a discrepancy of less than 15% compared with the calculated ones. From the simulation and experiment of ion beam trans-port, the validity of the calculated optimum operating conditions and the usefulness of the program OPTRANS are verified.

  • PDF

A Molecular Dynamics Study of the Stress Effect on Oxidation Behavior of Silicon Nanowires

  • Kim, Byeong-Hyeon;Kim, Gyu-Bong;Park, Mi-Na;Ma, U-Ru-Di;Lee, Gwang-Ryeol;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.499-499
    • /
    • 2011
  • Silicon nanowires (Si NWs) have been extensively studied for nanoelectronics owing to their unique optical and electrical properties different from those of bulk silicon. For the development of Si NW devices, better understanding of oxidation behavior in Si NWs would be an important issue. For example, it is widely known that atomic scale roughness at the dielectric (SiOx)/channel (Si) interface can significantly affect the device performance in the nano-scale devices. However, the oxidation process at the atomic-scale is still unknown because of its complexity. In the present work, we investigated the oxidation behavior of Si NW in atomic scale by simulating the dry oxidation process using a reactive molecular dynamics simulation technique. We focused on the residual stress evolution during oxidation to understand the stress effect on oxidation behavior of Si NWs having two different diameters, 5 nm and 10 nm. We calculated the charge distribution according to the oxidation time for 5 and 10 nm Si NWs. Judging from this data, it was observed that the surface oxide layer started to form before it is fully oxidized, i.e., the active diffusion of oxygen in the surface oxide layer. However, it is well-known that the oxide layer formation on the Si NWs results in a compressive stress on the surface which may retard the oxygen diffusion. We focused on the stress evolution of Si NWs during the oxidation process. Since the surface oxidation results in the volume expansion of the outer shell, it shows a compressive stress along the oxide layer. Interestingly, the stress for the 10 nm Si NW exhibits larger compressive stress than that of 5 nm Si NW. The difference of stress level between 5 an 10 anm Si NWs is approximately 1 or 2 GPa. Consequently, the diameter of Si NWs could be a significant factor to determine the self-limiting oxidation behavior of Si NWs when the diameter was very small.

  • PDF