• Title/Summary/Keyword: charge interaction

Search Result 365, Processing Time 0.027 seconds

An Theoretical Analysis of Electro-osmotic Flow in 2-dimensional slit with Electrical Double Layers in Interaction (전기 이중층의 상호작용을 고려한 2차원 슬릿 내의 전기삼투 유동에 관한 이론적 해석)

  • Lee, Dae-Keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.497-500
    • /
    • 2006
  • An theoretical analysis on the electro-osmotic flow in a 2-dimensional slit, that is induced by an external electric field acting on the electrical double layers near the slit wall, was performed. Especially, although there were many studies on the interacting electrical double layers, it was found in this study that they have several physical or mathematical fallacies. To resolve these, the general solution on the charge-regulating slit with the height as a parameter was obtained. The results of this work can provide the electrokinetic solution of nanoscale slit with the electrical double layer interaction as well as that of microscale slit without the interaction and can be used as the benchmark of a numerical analysis and the reference of electrokinetic flow path design.

  • PDF

Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil (PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향)

  • 강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF

Impacts of C60-Ionic Liquids (ILs) Interactions and IL Alkyl Chain Length on C60 Dispersion Behavior: Insights at the Molecular Level

  • Wang, Zhuang;Tang, Lili;Wang, Degao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2679-2683
    • /
    • 2014
  • Mechanisms underlying the impacts of interactions between carbon nanoparticles (CNPs) and ionic liquids (ILs) on the physicochemical behavior of CNPs need to be more full worked out. This manuscript describes a theoretical investigation at multiple levels on the interactions of fullerene $C_{60}$ with 21 imidazolium-based ILs of varying alkyl side chain lengths and anionic types and their impacts on $C_{60}$ dispersion behavior. Results show that ${\pi}$-cation interaction contributed to mechanism of the $C_{60}$-IL interaction more than ${\pi}$-anion interaction. The calculated interaction energy ($E_{INT}$) indicates that $C_{60}$ can form stable complex with each IL molecule. Moreover, the direction of charge transfer occurred from IL to $C_{60}$ during the $C_{60}$-IL interaction. Quantitative models were developed to evaluate the self-diffusion coefficient of $C_{60}$ ($D_{fullerene}$) in bulk ILs. Three interpretative molecular descriptors (heat of formation, $E_{INT}$, and charge) that describe the $C_{60}$-IL interactions and the alkyl side chain length were found to be determinants affecting $D_{fullerene}$.

Effects of Polyelectrolytes on the Charge Transfer Complexing between Indole derivatives and Methylviologen: Hydrophobic and Electrostatic Interactions

  • Park, Joon-Woo;Hwang, Book-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.145-148
    • /
    • 1985
  • The effect of anionic polyelectrolytes, poly(styrenesulfonate) (PSS) and poly(vinylsulfonate) (PVS), on the charge transfer complexing between indole derivatives and methyl viologen($MV^{++}$) cation was investigated. The results were compared with effect of NaCl and an anionic surfactant, sodium dodecylsulfate (SDS). Both PSS and PVS enhanced the complex formation of neutral species (indole and indole acetate at low pH), zwitter ionic tryptophan, and positively charged tryptamine and tryptophan at low pH with $MV^{++}$. This result was attributed to the contribution of hydrophobic interaction, in addition to electrostatic interaction. The enhancing effect of PSS was much higher than that of PVS reflecting the higher hydrophobicity of PSS. The interaction between indole acetate anion and $MV^{++}$ was greatly reduced by addition of PVS and PSS. The higher charge density of PVS was appeared as greater reducing effect indicating the importance of electrostatic force in this case. In all cases, the effect of polyelectrolytes showed maxima, and further addition of PVS and PSS decreased the effect. This behavior was explained in terms of distribution of indole derivatives and $MV^{++}$ in domain of polyanions. The complex formation constants and molar absorptivities of complexes were determined, and the values were compared with those in water and SDS solutions.

A New Empirical Potential Function and Its Application to Hydrogen Bonding

  • Kang, Young-Kee;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.1
    • /
    • pp.8-11
    • /
    • 1981
  • A new potential function based on spectroscopic results for diatomic molecules is presented and applied to the hydrogen bonding systems. The potential energy of interaction is supposed to have electrostatic, polarization, dispersion, repulsion and effective charge-transfer contributions. Estimates of the effective charge-transfer quantity have been made based on the average charge of the proton donor and the acceptor atoms. For dimers such as water, methanol, acetic acid and formic acid, the vibrational stretching frequencies and dimerization energies are calculated and dicussed in connection with Badger-Bauer rule.

Investigation of Charge Transfer between Graphene and Oxide Substrates

  • Min, Kyung-Ah;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.186.1-186.1
    • /
    • 2014
  • Graphene, which is a 2-dimensional carbon material, has been attracting much interest due to its unique properties and potential applications. So far, many interesting experimental and theoretical works have been done concerning the electronic properties of graphene on various substrates. Especially, there are many experimental reports about doping in graphene which is caused by interaction between graphene and its supporting substrates. Here, we report the study of charge transfer between graphene and oxide substrates using density functional theory (DFT) calculations. In this study, we have investigated the charge transfer related with graphene considering various oxide substrates such as SiO2(0001) and MgO(111). Details in charge transfer between graphene and oxides are analyzed in terms of charge density difference, band structure and work function.

  • PDF

Environment Dependent Coherence of a Short DNA Charge Transfer System

  • Kim, Hee-Young;Lee, Myeong-Won;Sim, Eun-Ji
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.607-612
    • /
    • 2007
  • Relationship between charge transfer mechanism and quantum coherence has been investigated using a realtime quantum dynamics approach. In the on-the-fly filtered propagator functional path integral simulation, by separating paths that belong to different mechanisms and by integrating contributions of correspondingly sorted paths, it was possible to accurately obtain quantitative contribution of different transport mechanisms. For a 5'-GAGGG-3' DNA sequence, we analyze charge transfer processes quantitatively such that the governing mechanism alters from coherent to incoherent charge transfer with respect to the friction strength arising from dissipative environments. Although the short DNA sequence requires substantially strong dissipation for completely incoherent hopping transfer mechanism, even a weak system-environment interaction markedly destroys the coherence within the quantum mechanical system and the charge transfer dynamics becomes incoherent to some degree. Based on the forward-backward path deviation analysis, the coherence variation depending on the environment is investigated numerically.