• Title/Summary/Keyword: charge disproportionation transition

Search Result 3, Processing Time 0.028 seconds

Crystallographic and Magnetic Properties of a Perovskite La1/3Sr2/3FeO2.96 (페롭스카이트 La1/3Sr2/3FeO2.96의 결정학적 및 자기적 성질에 관한 연구)

  • Yoon, Sung-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.167-171
    • /
    • 2005
  • Detailed aspects of the charge disproportionation (CD) transition for a polycrystalline $La_{1/3}Sr_{2/3}FeO_{2.96}$ were studied with the X-ray diffraction, $M\ddot{o}ssbauer$ spectroscopy, and SQUID magnetometer. The crystal structure was found to be rhombohedral with a space group R/3c. The lattice parameters were $a_R=5.4874\;\AA,\;and\;a_R=60.07^{\circ}$, respectively. $M\ddot{o}ssbauer$ spectra were taken within a wide range of temperature from 4.2 K up to room temperature. In the low temperature region, the spectra were comprised of two superimposed sextets which originated from $Fe^{3+}\;and\;Fe^{5+}$, respectively. This was the antiferromagnetic mixed valence state produced by the charges disproportionated into two different species. In the high temperature region, however, only a singlet from $Fe^{3.6+}$ was observed, indicating that it was a paramagnetic averaged valence state. The CD transition occurred in the temperature range from 175 K to 200 K, in which the two phases coexisted. The origin for the CD transition was explained by the thermally generated fast hopping of electrons. Hysteresis loop showed that there existed a strong antiferromagnetic interaction among magnetic ions. As the temperature increased thru the CD transition temperature, it was very likely that the interaction between $Fe^{3+}\;and\;Fe^{5+}$ was replaced by a more stronger one.

[Mössbauer] Spectroscopic Study of La1/3Sr2/3FeO2.96 under the External Magnetic Field (산소결핍 페롭스카이트 La1/3Sr2/3FeO2.96의 외부 자기장 하에서의 Mössbauer분광학적 연구)

  • Yoon, Sung-Hyun;Jung, Jong-Yong
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.81-84
    • /
    • 2005
  • The origin for the charge disproportionation (CD) transition in polycrystalline $La_{1/3}Sr_{2/3}FeO_{2.96}$ was examined using X-ray diffraction and the external field $M\ddot{o}ssbauer$ssbauer spectroscopy. In order to see how the external magnetic field affects the CD state above its transition temperature, an external magnetic field of up to 6 T was applied either parallel or perpendicular to the $\gamma-ray$ direction with the sample temperature fixed at 225 K, which was above the CD transition temperature. Without an external magnetic field, a completely paramagnetic singlet was obtained in the temperature range of the averaged valence state above the transition temperature, which was interpreted as coming from the average valence $Fe^{3.6+}$. In the longitudinal geometry, a magnetic Zeeman with its intensity ratio 3:0:1:1:0:3 is superimposed to the central singlet. In the transverse geometry, however, the central singlet disappears and only a magnetic component with its intensity ratio 3:4:1:1:4:3 emerges. The existence of a singlet is understood as an evidence of the fast electron-transfer among Fe ions. Since the singlet still exists under the magnetic field, the application of an external field has little effect on the conduction mechanism of hopping electrons.

Non-stoichiometry-induced metal-to-insulator transition in nickelate thin films grown by pulsed laser deposition

  • Lee, Jongmin;Choi, Kyoung Soon;Lee, Tae Kwon;Jeong, Il-Seok;Kim, Sangmo;Song, Jaesun;Bark, Chung Wung;Lee, Joo-Hyoung;Jung, Jong Hoon;Lee, Jouhahn;Kim, Tae Heon;Lee, Sanghan
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1577-1582
    • /
    • 2018
  • While controlling the cation contents in perovskite rare-earth nickelate thin films, a metal-to-insulator phase transition is reported. Systematic control of cation stoichiometry has been achieved by manipulating the irradiation of excimer laser in pulsed laser deposition. Two rare-earth nickelate bilayer thin-film heterostructures with the controlled cation stoichiometry (i.e. stoichiometric and Ni-excessive) have been fabricated. It is found that the Ni-excessive nickelate film is structurally less dense than the stoichiometric film, albeit both of them are epitaxial and coherent with respect to the underlying substrate. More interestingly, as a temperature decreases, a metal-to-insulator transition is only observed in the Ni-excessive nickelate films, which can be associated with the enhanced disproportionation of the Ni charge valence. Based on our theoretical results, possible origins (e.g. anti-site defects) of the low-temperature insulating state are discussed with the need of future work for deeper understanding. Our work can be utilized to realize unusual physical phenomena (e.g. metal-to-insulator phase transitions) in complex oxide films by manipulating the chemical stoichiometry in pulsed laser deposition.