• Title/Summary/Keyword: charge carrier transport

Search Result 72, Processing Time 0.027 seconds

Solution-Processed Quantum-Dots Light-Emitting Diodes with PVK/PANI:PSS/PEDOT:PSS Hole Transport Layers

  • Park, Young Ran;Shin, Koo;Hong, Young Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.146-146
    • /
    • 2015
  • We report the enhanced performance of poly(N-vinylcarbozole) (PVK)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based quantum-dot light-emitting diodes by inserting the polyaniline:poly (p-styrenesulfonic acid) (PANI:PSS) interlayer. The QD-LED with PANI:PSS interlayer exhibited a higher luminance and luminous current efficiency than that without PANI:PSS. Ultraviolet photoelectron spectroscopy results exhibited different electronic energy alignments of QD-LEDs with/without the PANI:PSS interlayer. By inserting the PANI:PSS interlayer, the hole-injection barrier at the QD layer/PVK interface was reduced from 1.45 to 1.23 eV via the energy level down-shift of the PVK layer. The reduced barrier height alleviated the interface carrier charging responsible for the deterioration of the current and luminance efficiency. This suggests that the insertion of PANI:PSS interlayer in QD-LEDs contributed to (i) increase the p-type conductivity and (ii) reduce the hole barrier height of QDs/PVK, which are critical factors leading to improve the efficiency of QD-LEDs.

  • PDF

Fully Organic PIN OLEDs with High Power Efficiency and Long Lifetime for the Use in Display and Lighting Applications

  • Blochwitz-Nimoth, Jan;Birnstock, Jan;Wellmann, Philipp;Werner, Ansgar;Romainczyk, Tilmann;Limmert, Michael;Grubing, Andre
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.955-962
    • /
    • 2005
  • Power efficiency, lifetime and stable manufacturing processes are the crucial parameters for the success of organic light emitting diodes (OLEDs) in display and lighting applications. Highest power efficiencies of PIN-OLEDs for all principal colours and for bottom and top emission OLED structures have been demonstrated. The PIN structure, which means the incorporation of intentionally doped charge carrier transport layer in a suitable OLED layer setup, lowers the operating voltage to achieve highest power efficiencies. Up to now the n-doping of the electron transport layer has been done by alkali metal co-deposition. This has main draw-backs in terms of manufacturability, since the handling of large amounts of pure Cs is a basic issue in production lines. Here we present in detail results on PIN-OLEDs comprising a newly developed molecular n-dopant. All the previous OLED performance data based on PIN-OLEDs with alkali metal doping could be reproduced and will be further improved in the future. Hence, for the first time, a full manufacturing compatible PIN-OLED is available.

  • PDF

Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer

  • Lim, Hee Seon;Kim, Sehun;Kim, Jeong Won
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.351-356
    • /
    • 2014
  • The electronic structure at organic-organic interface gives essential information on device performance such as charge transport and mobility. Especially, the molecular orientation of organic material can affect the electronic structure at interface and ultimately the device performance in organic photovoltaics. The molecular orientation is examined by the change in ionization potential (IP) for metal phthalocyanines (MPc, M=Zn, Cu)/fullerene ($C_{60}$) interfaces on ITO by adding the CuI templating layer through ultraviolet photoelectron spectroscopy measurement. On CuPc/$C_{60}$ bilayer, the addition of CuI templating layer represents the noticeable change in IP, while it hardly affects the electronic structure of ZnPc/$C_{60}$ bilayer. The CuPc molecules on CuI represent relatively lying down orientation with intermolecular ${\pi}-{\pi}$ overlap being aligned in vertical direction. Consequently, in organic photovoltaics consisting of CuPc and $C_{60}$ as donor and acceptor, respectively, the carrier transport along the direction is enhanced by the insertion of CuI templaing layer. In addition, optical absorption in CuPc molecules is increased due to aligned transition matrix elements. Overall the lying down orientation of CuPc on CuI will improve photovoltaic efficiency.

Effect of carrier transporting materials on the optical and electrical characteristics of blue phosphorescent organic light emitting devices (전하수송층에 따른 청색인광 OLED의 전기적.광학적 특성)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.36-37
    • /
    • 2009
  • We have studied the effect of the hole transporting layers on the device efficiencies blue phosphorescent organic light emitting diodes (PHOLED) with of iridiumIIIbis4,6-di-fluorophenyl-pyridinato-N,C2picolinate (FIrpic) doped 3,5--N,N-dicarbazole-benzene (mCP) host. The highest efficiency of blue PHOLED is strongy dependent on the hole transporting materials, exhibiting the maximum current efficiency.

  • PDF

Organic Bistable Switching Memory Devices with MeH-PPV and Graphene Oxide Composite

  • Senthilkumar, V.;Kim, Yong Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.290-292
    • /
    • 2015
  • We have reported about bipolar resistive switching effect on Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]:Graphene oxide composite films, which are sandwiched between aluminum and indium tin oxide electrodes. In this case, I-V sweep curve showed a hysteretic behavior, which varied according to the polarity of the applied voltage bias. The device exhibited excellent switching characteristics, with the ON/OFF ratio being approximately two orders in magnitude. The device had good endurance (105 cycles without degradation) and long retention time (5 × 103 s) at room temperature. The bistable switching behavior varied according to the trapping and de-trapping of charges on GO sites; the carrier transport was described using the space-charge-limited current (SCLC) model.

Selective modulation of charge carrier transport of photo-anode in PEC cell by a graphitized fullerene interfacial layer (C70이 도입 된 물분해 수소생산용 텅스텐 산화물의 광촉매 특성 연구)

  • Hong, Eun-Mi;Kim, Min-Gyeong;Lee, Ju-Yeol;Park, Seon-Yeong;Mul, Guido;Im, Dong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.150-150
    • /
    • 2014
  • 지구상 존재하는 화석연료의 고갈에 대한 우려와 함께 최근 들어 지구 온난화로 인해 야기되고 있는 심각한 지구환경 문제에 대한 관심이 고조되고 있다. 이산화탄소로 대표되는 지구 온난화를 일으키는 공해물질의 많은 부분이 현재 주에너지원으로 사용되는 화석연료에 기인하기 때문에 이를 대체할 수 있는 청정에너지 개발은 이미 세계적 당면 과제라고 할 수 있다. 그 중, 수소에너지는 청정에너지로써의 역할 뿐만 아니라 에너지 저장매체로써의 기능 또한 담당할 수 있어 주목 받고 있다. 본 연구에서는 텅스텐 광촉매를 사용하여 물을 수소와 산소로 분해 하고자 하였고 C70을 도입하여 분해 효율을 향상시키고자 하였다.

  • PDF

Numerical Modeling and Simulations of Electrical Characteristics of Multi-layer Organic Light Emitting Diodes

  • Lee, Hyun-Jung;Lee, Yong-Soo;Park, Jae-Hoon;Choi, Jong-Sun
    • Journal of Information Display
    • /
    • v.8 no.3
    • /
    • pp.11-16
    • /
    • 2007
  • Theoretical simulations of spatial distribution of charge carriers and recombination rate, and J-V characteristics of the multi-layer organic light emitting diodes are carried out. Drift-diffusion current transport, field-dependent carrier mobility, exponential and Gaussian trap distribution, and Langevin recombination models are included in this computer model. The simulated results show good agreement with the experimental data confirming the validity of the physical models for organic light emitting diodes.

Selective modulation of charge carrier transport of photo-anode in PEC cell by a graphitized fullerene interfacial layer (C70의 도입 및 반응면적에 따른 물분해 수소생산용 텅스텐 산화물의 광촉매 특성 연구)

  • Hong, Eun-Mi;Im, Dong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.102-102
    • /
    • 2015
  • 지구상 존재하는 화석연료의 고갈에 대한 우려와 함께 최근 들어 지구 온난화로 인해 야기되고 있는 심각한 지구환경 문제에 대한 관심이 고조되고 있다. 이산화탄소로 대표되는 지구 온난화를 일으키는 공해물질의 많은 부분이 현재 주에너지원으로 사용되는 화석연료에 기인하기 때문에 이를 대체할 수 있는 청정에너지 개발은 이미 세계적 당면 과제라고 할 수 있다. 그 중, 수소에너지는 청정에너지로써의 역할 뿐만 아니라 에너지 저장매체로써의 기능 또한 담당할 수 있어 주목 받고 있다. 본 연구에서는 텅스텐 광촉매를 사용하여 물을 수소와 산소로 분해 하고자 하였고 C70을 도입하여 분해 효율을 향상시키고자 하였다.

  • PDF

Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics

  • Woo, Jeong Wook;Baek, SeungBong;Song, Tae Kwon;Lee, Myang Hwan;Rahman, Jamil Ur;Kim, Won-Jeong;Sung, Yeon Soo;Kim, Myong-Ho;Lee, Soonil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • To understand the defect chemistry of multiferroic $BiFeO_3-based$ systems, we synthesized nonstoichiometric $Bi_{1+x}FeO_{3{\pm}{\delta}}$ ceramics by conventional solid-state reaction method and studied their structural, dielectric and high-temperature charge transport properties. Incorporation of an excess amount of $Bi_2O_3$ lowered the Bi deficiency in $BiFeO_3$. Polarization versus electric field (P-E) hysteresis loop and dielectric properties were found to be improved by the $Bi_2O_3$ addition. To better understand the defect effects on the multiferroic properties, the high temperature equilibrium electrical conductivity was measured under various oxygen partial pressures ($pO_2{^{\prime}}s$). The charge transport behavior was also examined through thermopower measurement. It was found that the oxygen vacancies contribute to high ionic conduction, showing $pO_2$ independency, and the electronic carrier is electron (n-type) in air and Ar gas atmospheres.

Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite (고에너지 볼 밀링이 Skutterudite계 CoSb3의 열전 및 전하 전송 특성에 미치는 영향)

  • Nam, Woo Hyun;Meang, Eun-Ji;Lim, Young Soo;Lee, Soonil;Seo, Won-Seon;Lee, Jeong Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.852-856
    • /
    • 2015
  • In this study, we investigate the effect of high-energy ball milling on thermoelectric transport properties in double-filled $CoSb_3$ skutterudite ($In_{0.2}Yb_{0.1}Co_4Sb_{12}$). $In_{0.2}Yb_{0.1}Co_4Sb_{12}$ powders are milled using high-energy ball milling for different periods of time (0, 5, 10, and 20 min), and the milled powders are consolidated into bulk samples by spark plasma sintering. Microstructure analysis shows that the high-energy ball milled bulk samples are composed of nano- and micro-grains. Because the filling fractions are reduced in the bulk samples due to the kinetic energy of the high-energy ball milling, the carrier concentration of the bulk samples decreases with the ball milling time. Furthermore, the mobility of the bulk samples also decreases with the ball milling time due to enhanced grain boundary scattering of electrons. Reduction of electrical conductivity by ball milling has a decisive effect on thermoelectric transport in the bulk samples, power factor decreases with the ball milling time.