• Title/Summary/Keyword: charge/discharge capacity

Search Result 482, Processing Time 0.023 seconds

Fabrication and charaterization of $RuO_2$based thin film supercapacitor ($RuO_2$박막을 이용한 박막 슈퍼캐패시터의 제작 및 분석)

  • 임재홍;최두진;전은정;남성철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.920-923
    • /
    • 2000
  • All solid-state thin film supercapacitor(TFSC) based on $RuO_2$ electrode was fabricated. Ruthenium oxide$(RuO_2)$ thin film was deposited on Pt/Ti/Si subsrate by d.c. magnetron sputtering. LiPON(lithium phosphorus oxynitride) thin film were deposited by r.f. reactive sputtering. X-ray diffraction patterns of $RuO_2$ and LiPON films revealed that crystal structures of both films were amorphous. To decrease resistivity of $RuO_2$ thin film, $RuO_2$ thin film was deposited with $H_2O$ vapor. In order to decide the maximum ionic conductivity, the LiPON films were prepared by various sputtering condition. The maximum ionic conductivity was $9.5\times{10}^7S/cm$. A charge-discharge measurements showed the capacity of $3\times{10-2}\;F/cm^2-\mu{m}$ for the as-fabricated TFSC. The discharging efficiency was decreased after 500 cycles by 40 %.

  • PDF

Preparation and Characterization of Pitch/Cokes Composite Anode Material for High Power Lithium Secondary Battery

  • Yu, Lan;Kim, Ki-Jung;Park, Dae-Yong;Kim, Myung-Soo;Kim, Kab-Il;Lim, Yun-Soo
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.210-217
    • /
    • 2008
  • Petroleum pitch and coke with wet mixture method or with dry mixture method were investigated to develop the composite anodic carbon material of high power lithium ion battery. Cokes coated with pitch were obtained by the heat treatment of mixture of cokes and pitch with different weight ratios at $800{\sim}1200^{\circ}C$. The charge and discharge characteristic of the consequent composite anodic carbon material assembled in batteries was tested. Cokes with wet mixture method have a smooth surface and their capacity changed little with changing temperature and content as compared to the cokes with dry mixture method. Although the reversible capacities showed different values by the anode manufacturing method, the composite anode with the mixture of 20 wt% of petroleum pitch and 80 wt% of coke showed the higher power capability and initial efficiency than the pitch based anode. However, the reversible capacity of the composite anode showed the reduced value as compared with the pitch based anode.

A novel free-standing anode of CuO nanorods in carbon nanotube webs for flexible lithium ion batteries

  • Lee, Sehyun;Song, Hyeonjun;Hwang, Jun Yeon;Kim, Seung Min;Jeong, Youngjin
    • Carbon letters
    • /
    • v.27
    • /
    • pp.98-107
    • /
    • 2018
  • Free-standing electrodes of CuO nanorods in carbon nanotubes (CNTs) are developed by synthesizing porous CuO nanorods throughout CNT webs. The electrochemical performance of the free-standing electrodes is evaluated for their use in flexible lithium ion batteries (LIBs). The electrodes comprising CuO@CNT nanocomposites (NCs) were characterized by charge-discharge testing, cyclic voltammetry, and impedance measurement. These structures are capable of accommodating a high number of lithium ions as well as increasing stability; thus, an increase of capacity in long-term cycling and a good rate capability is achieved. We demonstrate a simple process of fabricating free-standing electrodes of CuO@CNT NCs that can be utilized in flexible LIBs with high performance in terms of capacity and cycling stability.

A Study on Performance Characteristics of Ti-Zr Type Metal Hydrides and Hydrogen Storage Cylinders with the Hydrides (Ti-Zr계 금속수소화물 및 수소저장실린더의 성능특성 연구)

  • Kim, Ki-Youl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.519-526
    • /
    • 2012
  • Recently fuel cell is considered to be a new technology that can substitute the ICE(Internal Combustion Engine) as well as overcome environmental issues. In military applications, fuel cell has an unique advantages, which are quietness, namely, stealth. The environmental requirement such as shock and vibration in military application, however, is very severe comparing to civilian demand. Especially, the safety concerning hydrogen storage is the most important problem. Among the candidate methods to store hydrogen, the metal hydride storage is promising method owing to the storage mechanism of chemical absorption of hydrogen to metal hydrides. In this study, the new composition of Ti-Zr type metal hydride(A composition) was suggested and investigated to increase the hydrogen storage capacity. For comparison, the hydrogen charge-discharge properties were investigated with the commercialized Ti-Zr type metal hydride(B composition) using PCT(Pressure-Composition-Temperature) measurement. Also two hydrogen storage cylinders were loaded with each metal hydride and their hydrogen charging and discharging characteristics were investigated. As a result, it was found that the new Ti-Zr type metal hydride has a slightly higher hydrogen storage capacity compared to commercial Ti-Zr type metal hydride.

A Study on the Optimal Operation According to Appropriate PCS and Battery Capacity Estimation of PV-BESS System (PV-BESS 시스템의 적정 PCS, 배터리용량 산정에 따른 최적 운영에 관한 연구)

  • Choi, Yun Suk;Na, Seung You
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1174-1180
    • /
    • 2018
  • In December 2017, the government announced plans to increase the current proportion of renewable energy from 7% to 20% by 2030 through a plan called the Renewable Energy 3020 Implementation Plan. Therefore, the demand for installation of photovoltaic(PV), wind turbine(WT) and battery energy storage system(BESS) is expected to increase. In particular, the system combined with energy storage system(ESS) is expected to take up a large portion since PV and WT can receive high renewable energy certificates(REC) weights when combined with ESS. In this study, we calculate the optimal capacity of the power conditioning system(PCS) and the BESS by comparing the economical efficiency and maximize the efficiency of the PV-BESS system in which the PV and the BESS are connected. By analyzing the system marginal price(SMP) and REC, it maximize profits through application of REC weight 5.0 and optimal charge-discharge scheduling according to the SMP changes.

Using Coffee-Derived Hard Carbon as a Cost-Effective and Eco-Friendly Anode Material for Li-Ion Batteries

  • Hong, Sung Joo;Kim, Seong Su;Nam, Seunghoon
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2021
  • Through a simple filtration process, followed by carbonization within a reductive environment, coffee waste grounds can be transformed into a non-porous hard carbon for use in multiple contexts. This resulting coffee-waste carbon has been evaluated as an eco-friendly and cost-effective replacement for conventional graphite. When compared with different types of carbon, our study found that the coffee-waste carbon fell into the category of hard carbon, as verified from the galvanostatic charge/discharge profiles. The coffee-waste carbon showed a superior rate capability when compared to that of graphite, while compromising smaller capacity at low C rates. During electrochemical reactions, it was also found that the coffee-waste carbon is well exposed to electrolytes, and its disordered characteristic is advantageous for ionic transport which leads to the low tortuosity of Li ions. Finally, the high irreversible capacity (low initial Coulombic efficiency) of the coffee-waste carbon, which if also often observed in amorphous carbon, can be adequately resolved through a solution-based prelithiation process, thereby proving that the coffee-waste carbon material is quite suitable for commercial use as an anode material for quickly-chargeable electrodes.

Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters (등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템)

  • Lee, Seung-June;Ko, Younghwi;Kandala, Pradyumna Telikicherla;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries (리튬금속과 고체전해질의 계면 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

Capacitor Failure Detection Technique for Microgrid Power Converter (마이크로그리드 전력변환장치용 커패시터 고장 검출 기법)

  • Woo-Hyun Lee;Gyang-Cheol Song;Jun-Jae An;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1117-1125
    • /
    • 2023
  • The DC part of the DC microgrid power conversion system uses capacitors for buffers of charge and discharge energy for smoothing voltage and plays important roles such as high frequency component absorption, power balancing, and voltage ripple reduction. The capacitor uses an aluminum electrolytic capacitor, which has advantages of capacity, low price, and relatively fast charging/discharging characteristics. Aluminum electrolytic capacitors(AEC) have previous advantages, but over time, the capacity of the capacitors decreases due to deterioration and an increase in internal temperature, resulting in a decrease in use efficiency or an accident such as steam extraction due to electrolyte evaporation. It is necessary to take measures to prevent accidents because the failure diagnosis and detection of such capacitors are a very important part of the long-term operation, safety of use, and reliability of the power conversion system because the failure of the capacitor leads to not only a single problem but also a short circuit accident of the power conversion system.

Performance of Heat Pumps Charged with R170/R290 Mixture (R170/R290 혼합냉매 적용 히트펌프 성능 평가)

  • Park, Ki-Jung;Lee, Cheol-Hee;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.590-598
    • /
    • 2008
  • In this study, performance of R170/R290 mixtures is measured on a heat pump bench tester in an attempt to substitute R22. The bench tester is equipped with a commercial hermetic rotary compressor providing a nominal capacity of 3.5kW. All tests are conducted under the summer cooling and winter heating conditions of $7/45^{\circ}C$ and $-7/41^{\circ}C$ in the evaporator and condenser respectively. During the tests, the composition of R170 is varied from 0 to 10% with an interval of 2%. Test results show that the coefficient of performance (COP) and capacity of R290 are up to 15.4% higher and 7.5% lower than those of R22 for both conditions respectively. For R170/R290 mixture, the COP decreases and the capacity increases with an increase in the amount of R170. The mixture of 4%R170/96%R290 shows the similar capacity and COP as those of R22. For the mixture, the compressor discharge temperature is $16{\sim}30^{\circ}C$ lower than that of R22. There is no problem with mineral oil since the mixture is mainly composed of hydrocarbons. The amount of charge is reduced up to 58% as compared to R22. Overall, R170/R290 mixture is a good long term 'drop-in' candidate to replace R22 in residential air-conditioners and heat pumps.