• Title/Summary/Keyword: charcoal kiln

Search Result 29, Processing Time 0.024 seconds

Anatomical Characteristics of Charcoals Carbonized in a Korean Traditional Kiln (전통식 탄화로에서 제탄된 목탄의 해부학적 특성)

  • 황원중;권구중;이성재;박형수;김남훈
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • A comparative study on the structure of wood and charcoals was examined by scanning electron microscopy. Four species as Quercus variabilis $B_LUME$, Quercus mongozica $F_ISCH$ , Fraxinus rhynchcphylla $H_ANCE$ and Prunus sargentii $R_EHDER$ were used for this experiment. Cell dimensions of charcoals showed more higher shrinkage than those of wood. Shape of vessels was slightly changed due to become smaller in tangential diameter. Therefore, it was considered that the decrease of charcoal yield was caused by decrease of cell dimensions as well as loss of wood components.

  • PDF

Characterization of Charcoals prepared by Korean Traditional Kiln (우리나라 전통 숯가마로부터 생산된 숯의 특성분석)

  • An, Ki Sun;Kwak, Lee Ku;Kim, Hong Gun;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.208-216
    • /
    • 2022
  • Surface morphology and adsorption characteristics of black and white charcoals prepared from Korean traditional kiln were quantitatively analyzed. TGA and elemental analysis of charcoals were different from produced kiln, and thermal degradation temperature and carbon content of white charcoals were apparently higher than those of black charcoals. Surface morphology shows the activation progressed through the longitudinal direction of woods and new micropores were developed to radial direction on the surface of macropores as the furthermore activation resulting in the pore connection. BET adsorption isotherms show that there are low-pressure hysteresis due to the no desorption of adsorbates, which resulted in unique Type of charcoals overlapping Type I and Type IV. Such a low-pressure hysteresis is occurred from expansion of adsorbates, which were embedded in the micropore entrances and did not get out during the desorption run. The characteristics of charcoals such as specific surface area and pore size distribution did not show correct values depending on not only produced company but also sampling sites of one piece of charcoal. Therefore, it is not easy to suggest the quantitative characteristics of charcoals prepared from Korean traditional kiln. On the other hand, preparation the quality standard of charcoal is necessary for their special uses such as adsorbent.

Physicochemical Changes of Woody Charcoals Prepared by Different Carbonizing Temperature (탄화온도가 목탄의 물리·화학적 특성에 미치는 영향)

  • Jo, Tae-Su;Choi, Joon-Weon;Lee, Oh-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.53-60
    • /
    • 2007
  • Carbon content, properties of micro-pore, and chemical properties of the charcoal prepared from wood powder, wood fiber, and bark of Abies sibirica Ledeb at different temperatures were investigated. The yield of charcoal decreased with increasing the carbonization temperature. The yield of bark charcoal was higher than those of wood and wood fiber charcoal. The content ratio of carbon atom in the charcoal increased with increasing the carbonization temperature, whereas those of hydrogen and oxygen atom were decreased. Ash content of bark charcoal was also higher than those of wood and wood fiber charcoal. The specific surface area of wood and wood fiber charcoal was greater than that of bark charcoal. In all charcoal, the specific surface area and the volume of micro-pore were highest when the carbonization temperature was $600^{\circ}C$, however they tended to decrease when the temperature was reached to $800^{\circ}C$. For the functionality test of chemical groups on the charcoal surface, adsorption test have performed against acidic (HCl) and basic chemicals (NaOH, $Na_2CO_3$, and $NaHCO_3$). As carbonization temperature increased, adsorption amount of HCl increased, while adsorption amounts of NaOH, $Na_2CO_3$, and $NaHCO_3$ were decreased. The charcoal prepared at higher temperature showed basic properties, while the charcoals manufactured at lower temperature presented acidic properties. Therefore, it was considered that the carbonization temperature affected the pH of charcoal.

Anatomical Characteristics of Black and White Charcoal Manufactured in Korea (국내산 흑탄과 백탄의 해부학적 특성)

  • Kwon, Sung-Min;Kwon, Gu-Joong;Lee, Sung-Jae;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • Anatomical characteristics of black and white charcoal of Quercus variabilis and Quercus mongolica manufactured by a Korean traditional kiln were investigated by scanning electron microscopy. In both charcoal, the earlywood vessels shrank in tangential direction, whereas the other cells didn't change. However, in the case of latewood vessels, black charcoal did not show tangential direction shrinkage, but white charcoal did. The wood fiber were changed severly in shape due to the excessive shrinkage. Tyloses in early wood vessel were still shown unchanged shape in both charcoals. Cell wall of ray parenchyma was observed and their shapes were severly distorted. Voids between ray parenchyma were observed in white charcoal, which maybe due to high temperature in white charcoal. Moreover, lumen diameters in the uniseriate ray and multiseriate ray were decreased at the high charring temperature. These results showed that the low charcoal yield of the white charcoal compared to the black charcoal was caused by decrease of cell dimensions as well as loss of wood components associated with the carbonization temperature.

  • PDF

Properties and Formaldehyde Emission of Particleboards Fabricated with Waste Wood Charcoal (폐목재 탄화물로 제조한 파티클보드의 물성과 포름알데히드 방출량)

  • Park, Sang-Bum;Lee, Sang-Min;Park, Jong-Young;Kang, Eun-Chang
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • Particleboard(PB) is one of the most commonly used wood-based composite materials, which can be prepared by utilizing any kind of low grade wooden materials like waste wood which contains formaldehyde itself. Therefore, PB have been of considerable interest, in issues regarding the formaldehyde emission problems. Wood wastes are carbonized by the carbonization kiln at $800^{\circ}C$. Charcoal has been known as a formaldehyde adsorber. Thus, in this study, we fabricated PBs with carbonized waste particles cores, to examine the possibility of developing less formaldehyde emitting boards. The physical and mechanical properties were evaluated by Korean Standard (KS F 3104). The moisture content of PBs ranged from 6.76 to 8.36%. Internal bond strengths decreased with the increase in the content of carbonized core particles. Formaldehyde emission showed minimum value at 25% of carbonized core particles, but the emission values increased when the amount of carbonized cote particles increased. When 25% of carbonized core particles was used, PBs met KS F 3104 standard properties.

  • PDF

A Study on Moisture Adsorption Capacity by Charcoals (숯의 수분 흡착성능 연구)

  • Kim, Dae Wan;An, Ki Sun;Kwak, Lee Ku;Kim, Hong Gun;Ryu, Seung Kon;Lee, Young Seak
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.377-385
    • /
    • 2022
  • Surface morphology and adsorption characteristics of charcoals prepared from Korean traditional kiln were analyzed, and their moisture adsorption capacities were examined with respect to humidity and temperature change. Moisture adsorption capacities of red-clay powder, activated carbon fiber fabric (ACF fabric) and activated carbon fiber paper(ACF paper) were also examined to compare with those of charcoals. Moisture adsorption capacity of charcoal was low less than 45% humidity due to its hydrophobic property, but it slowly and linearly increased as increasing the humidity. Moisture adsorption capacity of red-clay powder was similar to charcoal at low level humidity, it increased exponentially as increasing the humidity showing Type V adsorption isotherm. Therefore, the weather forecast annal prepared by employee of weather centre in Joseon Dynasty is experimentally approved. ACF fabric and ACF paper show excellent moisture adsorption capacities, which can be used to humidity measuring sensor. Adsorption isotherm of charcoal slice was peculear showing the mixed Type I and Type IV due to low-pressure hysteresis that was occurred from embedment of nitrogen in crevice of charcoal. The specific surface area of charcoal increased by grinding charcoal slice to powder, resulted in increasing the desorption amount of adsorbent at low relative pressure.

The Study of Absolute Dating on Jinju Janghungri Kiln site. (진주 장흥리 와요지 유적의 절대편년연구)

  • Yi, Hyeon-Ju;Kim, Dae-Wung;Hong, Jong-Ouk;Shim, Il-Wun
    • 보존과학연구
    • /
    • s.26
    • /
    • pp.189-202
    • /
    • 2005
  • This study carried out to understand thermoluminescence dating of ancient tiles at Jinju Janghungri Kilin site. Also radiocarbon dating by the benzene synthesis method and Liquid scintillation counting method were performed for comparison for the agedetermination of charcoal sample at the obtained same site.1st and 2nd glow curve were obtained according to the typical method thermoluminescence. Plateau tests of revealed the proper temperature range to be $300~440^{\circ}C$ Palaeodose average values were formed to the 2.44Gy.Annual dose of ancient tiles was calculated from soil samples and ancient tiles it self by measuring alpha radiation dose, potassium concentrations and water contents respectively. Annual dose average values were calculated to be 7.012mGy/yr.The radiocarbon age(BP year) was converted to calibrated age(AD/BC year) using high precision curve. Radiocarbon ages were calculated to be AD 15~17 .Comparison of samples with their radiocarbon and thermoluminescence ages for revealed the in range the AD 15~17. This result means that the measured absolute ages are in good agreement with each other within the margin of error.

  • PDF

Efficacy of Forest-Thermal Combined Therapy for Anxiety and Stress among Smoking-Cessation Attempters

  • Chae, Youngran;Lee, Sunhee;Kim, So-yeon;Choi, Jungkee
    • Journal of Korean Biological Nursing Science
    • /
    • v.24 no.4
    • /
    • pp.227-234
    • /
    • 2022
  • Purpose: Smoking is a way of coping with anxiety and stress. This study aimed to identify the effects of forest-thermal combined therapy on anxiety and depression in smokers who desire to quit smoking. Methods: Thirty participants were included in the study, 15 in the experimental group and 15 in the control group. Those in the experimental group participated in a three-day forest-thermal combined therapy program. The program includes forest walks, meditation and thermal therapy in the charcoal kiln. Results: Before and after the program, physiological indicators such as cortisol, heart rate variability, and serotonin anxiety level using the state-trait anxiety inventory (STAI), and stress level using the psychosocial well-being index (PWI) were measured in both groups. The differences in STAI (p=.012) and PWI (p=.006) scores between the experimental and control groups were statistically significant. However, cortisol, heart rate variability, and serotonin were not significantly different between the two groups after the program. Conclusion: These results show that forest-thermal combination therapy effectively reduces anxiety and stress in smokers. It suggests that forest-thermal therapy can potentially increase smoking cessation rates.

Component Analysis of Softwood Vinegar (침엽수 목초액의 성분분석)

  • ;;;Sano Yoshihiro
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.28-34
    • /
    • 2001
  • To analyze chemical compositions of softwood vinegar prepared with continuous carbonized kiln, the chemical compositions were analyzed by GC-MS spectrometry. The results were summarized as follow : 1. The amounts of methylalcohol and acetic acid and of vinegar were 0.12% and 0.8% respectively, and acidity was 0.85 2. Perfume components of vinegar were frufual, 5-meayl-2-furancarboxyaldehyde, 2,3-pentanedione, 2-butanol, 2,3-dihydrofuran, 1-(2-furanyl)-etanone, benzaldehyde, 2-furan carboxyaldehyde and acetic acid. 3 Vinegar prepared from softwood, so that murk amount of guaiacyl compound and phenol derivetives are produced from lignin and extractives was analγzed. 4 The yield of 4-methyl-di-tert-butylphenol was the highest in the nutural and carbonyl and acetic acid in the acid fractions, 3-ethylpentane in the basic fraction, and guaiacol in the phenolic fraction.

  • PDF