• Title/Summary/Keyword: characteristics of the buckling behaviors

Search Result 39, Processing Time 0.022 seconds

Experimental study on dynamic buckling phenomena for supercavitating underwater vehicle

  • Chung, Min-Ho;Lee, Hee-Jun;Kang, Yeon-Cheol;Lim, Woo-Bin;Kim, Jeong-Ho;Cho, Jin-Yeon;Byun, Wan-Il;Kim, Seung-Jo;Park, Sung-Han
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.183-198
    • /
    • 2012
  • Dynamic buckling, also known as parametric resonance, is one of the dynamic instability phenomena which may lead to catastrophic failure of structures. It occurs when compressive dynamic loading is applied to the structures. Therefore it is essential to establish a reliable procedure to test and evaluate the dynamic buckling behaviors of structures, especially when the structure is designed to be utilized in compressive dynamic loading environment, such as supercavitating underwater vehicle. In the line of thought, a dynamic buckling test system is designed in this work. Using the test system, dynamic buckling tests including beam, plate, and stiffened plate are carried out, and the dynamic buckling characteristics of considered structures are investigated experimentally as well as theoretically and numerically.

Characteristics of Strength and Deformation of Aluminum Honeycomb Sandwich Composites Under Bending Loading (굽힘 하중을 받는 알루미늄 하니컴 샌드위치 복합재료의 강도 및 변형 특성)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • The strength characteristics as well as deformation behaviors of honeycomb sandwich composite (HSC) structures were investigated under bending in consideration of various failure modes such as skin layer yielding, interface-delamination, core shear deformation and local buckling. Deformation behaviors of honeycomb sandwich plates were observed with various types of aluminum honeycomb core and skin layer. Their finite-element analysis simulation with a real model of honeycomb core was performed to analyze stresses and deformation behaviors of honeycomb sandwich plates. Its results were very comparable to the experimental ones. Consequently, the increase in skin layer thickness and in cell size of honeycomb core had dominant effects on the strength and deformation behaviors of honeycomb sandwich composites.

  • PDF

A Study on the Shape Modeling and Structural Stability of an Icosahedron-typed Modular Dome (정20면체 모듈러 돔의 형상모델링 및 구조안정성에 관한 연구)

  • Shon, Su-Deok;Woo, Hyo-Jun;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.51-59
    • /
    • 2015
  • In this study, a shape design and an analysis considering structural stability were investigated to develop an icosahedron-based hemispherical modular dome. To design this modular dome, a program that can perform icosahedron shape modeling, modularization of joint connection members, and the analysis of structural stability was developed. Furthermore, based on the adopted numerical model, the eigen buckling mode, unstable behavior characteristics according to load vector, and the critical buckling load of the modular dome under uniformly distributed load and concentrated load were analyzed, and the resistance capacities of the structure according to different load vectors were compared. The analysis results for the modular dome suggest that the developed program can perform joint modeling for shape design as well as modular member design, and adequately expressed the nonlinear behaviors of structured according to load conditions. The critical buckling load results also correctly reflected the characteristics of the load conditions. The uniformly distributed load was more advantageous to the structural stability than concentrated load.

Buckling and Postbuckling Behavior of Stiffened Laminated Composite Panels (보강된 복합적층 판넬의 좌굴 및 좌굴후 거동 연구)

  • Lee, In-Cheol;Gyeong, U-Min;Gong, Cheol-Won;Hong, Chang-Seon;Kim, Cheon-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3199-3210
    • /
    • 1996
  • The buckling and postbuckling behaviors were sutdied analytically and experimentally for stiffened laminated composite panels under compression loading. The panels with I-, blade, -and hat-shapeed stiffeners were investigated. In the analysis, the stiffened panels were anlyzed using the nonlinear finite element method combined with an improved arc-length method. The progressive failure analysis was done by adopting the maximum stress criterion and complete unloading failure model. The effects of the fiber angles were investigated on the buckling and postbuckling behaviors. In the experiment, the web and the lower cap of each stiffener were formed by the continuous lay-up of the skin for cocuring the stiffened panels. Therefore, the separation between stiffener and skin was not found in the junction part even after postbuckling ultimate load and the stiffened panels had excellent postbuckling load carrying capacity. A shadow moire thchnique was used to monitor the out-of-plane deformations of the panels. The piezoelectric films were attached to the panels to get the failure characteristics of the panel. The analytical results on the buckling load, postbuckling ultimate load, and failure pattern showed good agreement with the experimental results.

Debonding and Postbuckling Failure Characteristics of Composite Stiffened Panels (복합재 보강패널의 분리파손 및 좌굴 후 강도 특성)

  • Kim, Kwang-Soo;Yoo, Jae-Seok;An, Jae-Mo;Jang, Young-Soon;Yi, Yeong-Moo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.59-63
    • /
    • 2005
  • Compression tests were performed for six types of hat stiffened composite panels with different bonding methods and stiffener section shapes. Six panels showed similar behaviors in buckling and post-buckling region before a skin-stiffener separation failure occurred. The skin-stiffener separation failures occurred in the panels with closed type stiffeners regardless of bonding methods, but not in the panels with open type stiffeners. The separation failures not only reduced the postbuckling strength but also changed buckling mode and postbuckling stiffness. All the separation failures were initiated at the stiffener flange edges closest to skin buckling crests. The co-cured or secondary bonded panels with open type stiffeners had the largest structural performance. Because the post-buckling strength and performance of the composite stiffened panels are reduced by the separation failure, it is important to find bonding methods, stiffener types and manufacturing parameters for preventing of the separation failure.

  • PDF

A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams

  • Bekhadda, Ahmed;Cheikh, Abdelmadjid;Bensaid, Ismail;Hadjoui, Abdelhamid;Daikh, Ahmed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.189-206
    • /
    • 2019
  • In this work, a novel first-order shear deformation beam theory is applied to explore the vibration and buckling characteristics of thick functionally graded beams. The material properties are assumed to vary across the thickness direction in a graded form and are estimated by a power-law model. A Fourier series-based solution procedure is implemented to solve the governing equation derived from Hamilton's principle. The obtained results of natural frequencies and buckling loads of functionally graded beam are checked with those supplied in the literature and demonstrate good achievement. Influences of several parameters such as power law index, beam geometrical parameters, modulus ratio and axial load on dynamic and buckling behaviors of FGP beams are all discussed.

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

THERMAL POSTBUCKLING CHARACTERISTICS OF STEP-FORMED FG PANELS WITH TEMPERATURE-DEPENDENT MATERIAL IN SUPERSONIC FLOW

  • Lee, Sang-Lae;Kim, Ji-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.566-571
    • /
    • 2007
  • In this study, it is investigated the thermal post-buckling characteristics of step-formed FG panel under the heat and supersonic flow. Material properties are assumed to be temperature dependent as well as continuously varying in the thickness direction of the panel according to a simple power law distribution in terms of the volume fraction of the constituent. First-order shear deformation theory(FSDT) of plate is applied to model the panel, and the von Karman strain-displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Also, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel. Numerical results are summarized to reveal the thermal post-buckling behaviors of FG panels with various volume fractions, temperature conditions and aerodynamic pressures in detail.

  • PDF

Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates (압전적층판의 열-압전-탄성 동적 비선형 작동특성)

  • Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.662-667
    • /
    • 2005
  • Nonlinear dynamics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi field layer wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap through piezoelectric potentials and the load path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

  • PDF

A comprehensive review on the modeling of smart piezoelectric nanostructures

  • Ebrahimi, Farzad;Hosseini, S.H.S.;Singhal, Abhinav
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.611-633
    • /
    • 2020
  • In this paper, a comprehensive review of nanostructures that exhibit piezoelectric behavior on all mechanical, buckling, vibrational, thermal and electrical properties is presented. It is firstly explained vast application of materials with their piezoelectric property and also introduction of other properties. Initially, more application of material which have piezoelectric property is introduced. Zinc oxide (ZnO), boron nitride (BN) and gallium nitride (GaN) respectively, are more application of piezoelectric materials. The nonlocal elasticity theory and piezoelectric constitutive relations are demonstrated to evaluate problems and analyses. Three different approaches consisting of atomistic modeling, continuum modeling and nano-scale continuum modeling in the investigation atomistic simulation of piezoelectric nanostructures are explained. Focusing on piezoelectric behavior, investigation of analyses is performed on fields of surface and small scale effects, buckling, vibration and wave propagation. Different investigations are available in literature focusing on the synthesis, applications and mechanical behaviors of piezoelectric nanostructures. In the study of vibration behavior, researches are studied on fields of linear and nonlinear, longitudinal and transverse, free and forced vibrations. This paper is intended to provide an introduction of the development of the piezoelectric nanostructures. The key issue is a very good understanding of mechanical and electrical behaviors and characteristics of piezoelectric structures to employ in electromechanical systems.