• Title/Summary/Keyword: characteristics of debris flow

Search Result 129, Processing Time 0.029 seconds

Analysis on the Characteristics of debris flows occurred in Jinbu area of Gangwon Province due to heavy rainfall (2006년 집중호우로 발생된 강원도 진부지역의 토석류 특징 분석)

  • Seo, Heung-Seok;Yune, Chan-Young;Jun, Kyoung-Jea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1041-1050
    • /
    • 2009
  • Many slope failures and debris flows were occurred in Jinbu area of Gangwon Province due to heavy rainfall of much more than 400mm in July, 2006. In the area, although about 3 years passed, valleys and gulleys keep their original form when the events happened. Field investigations were performed on Singi-ri and Bongsan-ri in Jinbu area to examine the characteristics of debris flow as well as slope failure. As the result, debris flows were classified as 3 types according to their characteristics analyzed by field investigations.

  • PDF

Study on the Numerical Simulation of Debris Flow due to Heavy Rainfall (집중 강우에 따른 토석류 유출의 수치계산)

  • Kim, Jung-Han;Min, Sun-Hong;Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.389-395
    • /
    • 2009
  • In spite of many numerical analysis of debris flow, a little information has been found out. In this paper the watershed is divided to apply rainfall runoff and to estimate debris flow integrating flow and soil article. We use the contour data to extract spatially distributed topographical information like stream channels and networks of sub-basins. A Quasi Digital Elevation Model (Q-DEM) is developed, integrated, and adopted to estimate runoff based on marked one. As a results, it has been found out that the debris flow was close to observed flow hydrograph. Because debris flow is finished in 30 second, it is important that we have to prepare its prior countermeasure to minimize the damage of debris flow. The GIS-linked model will provide effective information to plan river works for debris flow.

  • PDF

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

Rheological Models for Describing Fine-laden Debris Flows: Grain-size Effect (세립토 위주의 토석류에 관한 유변학적 모델: 입자크기 효과)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.49-61
    • /
    • 2011
  • This paper presents the applicability of rheological models for describing fine-laden debris flows and analyzes the flow characteristics as a function of grain size. Two types of soil samples were used: (1) clayey soils - Mediterranean Sea clays and (2) silty soils - iron ore tailings from Newfoundland, Canada. Clayey soil samples show a typical shear thinning behavior but silty soil samples exhibit the transition from shear thinning to the Bingham fluid as shear rate is increased. It may be due to the fact that the determination of yield stress and plastic viscosity is strongly dependent upon interstructrual interaction and strength evolution between soil particles. So grain size effect produces different flow curves. For modeling debris flows that are mainly composed of fine-grained sediments (<0.075 mm), we need the yield stress and plastic viscosity to mimic the flow patterns like shape of deposition, thickness, length of debris flow, and so on. These values correlate with the liquidity index. Thus one can estimate the debris flow mobility if one can measure the physical properties.

Application of Risk Indexes for Classifying Vulnerable Zone and Planning Structural Alternative in Preparation for Debris Flow Disaster (토사재해 취약 지역 분류 및 구조적 대안 수립을 위한 위험지표 적용)

  • Oh, Seung Myeong;Song, Chang Geun;Jung, Min Hyung;Seong, Joo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.112-116
    • /
    • 2017
  • This study applied risk indexes to the disaster flow event occurred at Mt. Umyeon region in 2011. A 2D hydrodynamic model was employed to calculate flow characteristics, and the model was validated against two dam break flow problems conducted by Bellos and EU CADAM project. The model performance was shown to be satisfactory. In order to determine which index is more appropriate to assess the vulnerability of debris flow, 3 risk indexes (FII, FHR and VDI) were considered. It was found that VDI, which determines the risk level only by the velocity factor, consistently predicted the risk level corresponding to 6 because the velocity range was widely organized. However, in the case of FII and FHR, the risk was reasonably quantified due to combined consideration of significant factors of flow velocity and debris thickness. Therefore, FII and FHR are expected to be more accurate than VDI. However, two indexes still need to be improved to include major factors such as debris density or material properties.

Characteristics of Runout Distance of Debris Flows in Korea (한국 토석류의 이동거리 특성)

  • Choi, Dooyoung;Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.193-201
    • /
    • 2012
  • In the last decade, heavy rainfall induced debris flow events have been remarkably occurred in Korea. Consequently, debris flow is becoming one of the most dangerous natural phenomena in mountainous area. Understanding and correct predicting of the runout distance of debris flow is an essential prerequisite for developing debris flow hazard map and prevention technology. Based on the simple and widely used sled model, in this study, we analyse the net efficiency of debris flows which is a dimensionless constant (=1/R) and defined by the ratio of the horizontal runout distance L from the debris flow source to deposit and the vertical elevation H of the source above the deposit. The analysis of field data observed in total 238 debris flow events occurred from 2002 to 2011 reveals that the representative value of the net efficiency of debris flows in Korea is 4.3. The data observed in Gangwon province where is the most debris flow-prone area in Korea shows that debris flows in Inje area have the runout distance longer than those in Pyongchang and Gangneung. Overall features of the net efficiency of debris flows observed in the central Korea are similar to those in the southern Korea. The estimation based on aerial photographs and available depositional conditions appears to overestimate the net efficiency compared to estimation based on the field observations, which indicates that appropriate depositional conditions need to be developed for debris flows in Korea.

The Study for Enhancing Resilience to Debris Flow at the Vulnerable Areas (토석류 재해발생 시 레질리언스 강화를 위한 연구)

  • Kim, Sungduk;Lee, Hojin;Chang, Hyungjoon;Dho, Hyonseung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.8
    • /
    • pp.5-12
    • /
    • 2021
  • Climate change caused by global warming increases the frequency of occurrence of super typhoons and causes various types of sediment disasters such as debris flows in the mountainous area. This study is to evaluate the behavior of debris flow according to the multiplier value of the precipitation characteristics and the quantity of debris flow according to the typhoon category. For the analysis of the debris flow, the finite difference method for time elapse was applied. The larger the typhoon category, the higher the peak value of the flow discharge of debris flow and the faster the arrival time. When the precipitation characteristic multiplier is large, the fluctuation amplitude is high and the bandwidth is wide. When the slope angle was steeper, water discharge increased by 2~2.5 times or more, and the fluctuation of the flow discharge of debris flow increased. All of the velocities of debris flow were included to the class of "Very rapid", and the distribution of the erosion or sedimentation velocity of debris flows showed that the magnitude of erosion increased from the beginning, large-scale erosion occurred, and flowed downstream. The results of this study will provide information for predicting debris flow disasters, structural countermeasures and establishing countermeasures for reinforcing resilience in vulnerable areas.

Influenced on Analysis of Characteristics of Forest Environmental Factors on Debris Flow Occurrence (토석류 위험지역에 영향하는 산림환경 특성 분석)

  • Park, Jae-hyeon;Kang, Min-Jeong;Kim, Ki-Dae
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.403-410
    • /
    • 2015
  • This study was conducted to analyze the forest environmental characteristics on a total of 20 forest environmental factors affecting the debris flow against 272 sites of risk areas. In the case of environmental factors, it showed the high risk of debris flow under the following conditions such as soil depth of less than 30cm, west slope, altitude of 200~300 m, mountain average slope of $25{\sim}30^{\circ}$, sandy loam, igneous rocks, and composite slope. Among the rainfall factors, 50~100 mm of maximum hourly rain fall and 300 mm of maximum rain fall per day have been shown the high risk of debris flow. Furthermore, the high risk of debris flow was related to the river-bed average slope of $10{\sim}20^{\circ}$, the river-bed average width of >10 m, the small amount of debris in river-bed (less than 20% of river-bed structure), the drainage density of >$1km/km^2$, the 40~60% of area with more than $20^{\circ}$ slope, and the 40~60% of areas with risk grade 2 of landslide. In addition, forest environmental factors including the driftwood, soil erosion control structures, age-class 3, crown density (density), and mixed forest were important factors causing the high risk of debris flow.

Characteristic Analysis of Dredging and Sedimentation Debris Control Facilities in Inje, Gangwon (강원 인제지역 토석류 사방시설의 준설 및 퇴적 특성)

  • Park, Byungsoo;Jun, Sanghyun;Um, Jaekyung;Cho, Kwangjun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2013
  • 5 each permeable and impermeable debris dams were selected to analyze the characteristics of dredging and sedimentation according to facility type in Inje, Gangwon. Field tests for the ground water table and sedimentation characteristics of the selected dams were performed. Furthermore, data of the dredging amount, storage capacity, and drainage area were analyzed for the 51 more debris control facilities. From the results of field tests, it was found that the storage capacity of impermeable debris dam could be not enough when the large debris flow is produced since sediments are accumulated even if large debris flow was not occurred. Drainage can be a problem since the ground water table of impermeable debris dam was reached to the surface of ground. However, it was found that the ground saturation should not occur at heavy rain since ground water table of permeable debris dam was located in lower part of buttress. Furthermore, from the analysis results of relation among the dredging amount, basin area, and capacity of debris control facility, it was found that size of debris control facility was not reflected by the basin area. Effective planning and construction should be accomplished for the future since the real sedimentation amount was not significant even though large debris dams were constructed.

Characteristic Analysis and Prediction of Debris Flow-Prone Area at Daeryongsan (대룡산 토석류 특성 분석 및 위험지역 예측에 관한 연구)

  • CHOI, Young-Nam;LEE, Hyung-Ho;YOO, Nam-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.48-62
    • /
    • 2018
  • In this study, landslide of debris flow occurred at 51 sites around Daeryounsan located in between Chuncheon-si and Hongcheon-gun during July in 2013 were investigated in field and behavior characteristics of debris flow were analyzed on the basis of records of rainfall and site investigation. According to debris flow types of channelized and hill slope, location and slope angle of initiation and deposit zone, and width and depth of erosion were investigated along entire runout of debris flow. DEM(Digital Elevation Model) of Daeryounsan was constructed with digital map of 1:5,000 scale. Land slide hazard was estimated using SINMAP(Stability INdex MAPping) and the predicted results were compared with field sites where debris flow occurred. As analyzed results, for hill slope type of debris flow, predicted sites were quite comparable to actual sites. On the other hand, for channelized type of debris flow, debris flow occurrence sites were predicted by using stability index associated with topographic wetness index. As analyzed results of 4 different conditions with the parameter T/R, Hydraulic transmissivity/Effective recharge rate, proposed by NRCS (Natual Resources Conservation Service), predicted results showed more or less different actual sites and the degree of hazard tended to increase with decrease of T/R value.