• Title/Summary/Keyword: characteristics of debris flow

Search Result 130, Processing Time 0.034 seconds

A Study on Model Tests for Debris Flow Characteristics (토석류 흐름 상태 특성 파악을 위한 모형실험 연구)

  • Kim, Kihwan;Lee, Donghyuk;Kim, Daehoe;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.83-89
    • /
    • 2008
  • This study is to figure out the speed of soil diffusion and shapes as well when landslide occurred. It was measured the speed and shapes of soil diffusion using installed indoor-simulation of a land slide. Standard sand was used to measure it and this measurement is following the moisture content of standard sand. The result of this experiment follows the moisture content; as the moisture content goes up, the area and speed of soil diffusion goes faster as well. As the average of records by the moisture content was analyzed, the area and speed of land slide are increased proportionally. The shape of diffusion is formed as fanwise. It depends on the moisture content as above; the speed was fast when the moisture content is high, and it was getting narrower and longer as the speed of diffusion was faster.

  • PDF

Wall-roughness effects of trapezoidal ribs on the flow of open channel (개수로 흐름에서 사다리꼴 돌출줄눈의 벽면조도 효과)

  • Shin, Seung Sook;Park, Sang Deog;Park, Ho Kook
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.255-264
    • /
    • 2019
  • The trapezoidal ribs had been installed in the retaining wall in order to reduce to flood damage in the impingement of mountain rivers. In this study, experiments in open channel with the trapezoidal ribs on sidewall were conducted to evaluate the effect of flow resistance by the trapezoidal shape. The hydraulic flow characteristics according to the flow rates were surveyed where the wall roughness is k-type that dimensionless spacings, ${\lambda}_{nv}$, are 6, 9, and 12. The flow-resistance factors such as roughness and friction coefficients increased generally with increase of the spacing of ribs. In high flow rate the friction coefficient showed the maximum value when ${\lambda}_{nv}$ is 9. Though the trapezoidal ribs has the relatively smaller flow resistance compared to the square ribs, their form drag accounted for mean 62% of the total flow resistance. It was confirmed that the optimal spacing of trapezoidal ribs to maximize the effect of flow resistance as the wall roughness increases are 9 to 12 times of the height of trapezoidal ribs.

Application of Geomorphological Features for Establishing the Preliminary Landslide Hazard (초기 산사태 위험도 구축을 위한 지형요소의 활용)

  • Cha, A Reum;Kim, Tai Hoon;Gang, Seok Koo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2015
  • Due to the characteristics of landslide disasters including debris flow, the rapid speed to downward and difficulty to respond or evacuate from them, it is imperative to identify their potential hazards and prepare the reduction plans. However, the current landslide hazards generated by a variety of methods has been raised its accuracy because of the complexity of input data and their analyses, and the simplification of the landslide model. The main objective of this study is, therefore, to evaluate the preliminary landslide hazard based on the identification of geomorphological features. Especially, two methodologies based on the statistics of the directional data, Vector dispersion and Planarity analyses, are used to find some relationships between geomorphological characteristics and the landslide hazard. Results show that both methods well discriminate geomorphological features between stable and unstable domains in the landslide areas. Geomorphological features are closely related to the landslide hazard and it is imperative to maximize their characteristics by adapting multiple models rather than individual model only. In conclusions, the mechanism of landslide is not determined solely by a simple cause but the complex natural phenomenon caused by the interactions of the numerous factors and it is of primary importance to require additional researches for the outbreaking mechanism that are based on various methodologies.

Analysis of Steep slope Disaster Sites using Geographic Information System (GIS를 활용한 급경사지 재해현장 분석 -전북 무주군, 장수군, 진안군 중심으로-)

  • Lee, Min-Seok;Oh, Jeong-Rim;Park, Dug-Keun;Kim, Man-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.940-945
    • /
    • 2010
  • There are human casualties that caused by slope-stability related disasters such as landslide and debris flow during typhoon and rainy season every year in Korea. These disaster sites can be analyzed systematically using digital topographic data and aerial photogrammetry. In this study, geographical factors such as slope degree, geology, height, and soil depth are analyzed in four landslide-disaster sites from Muju, Jinan, and Jangsu County based on digital elevation maps generated by ArcGIS. Each site showed different characteristics in geology and geography and it is found that GIS can be utilized for the visualization of steep-slope failure areas.

  • PDF

The Analysis on Flow Characteristics of Increasing Velocity by Accumulated Debris at the Pier (교각주변에 부유잡목 집적시 유속증가에 따른 흐름특성분석)

  • Choi, Gye-Woon;Gwon, Yong-Hyeon;Kim, Young-Kyu;Kim, Joo-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2202-2206
    • /
    • 2008
  • 본 연구에서는 물의 다양한 흐름으로 인한 교각주변의 수위 및 유속변화에 대하여 연구하기 위해 수리모형을 설치하여 개도비를 70%로 고정시키고 유속을 44cm/sec, 57cm/sec, 72cm/sec, 84cm/sec로 변화시켜 부유잡목의 높이와 폭에 따른 흐름특성을 분석하였다. 그 결과 동일개도비 70%상에서 상류에서는 유속이 증가하면서 수위 또한 증가를 하였으며 교각 직상류에서는 갑자기 증가하였다. 교각 직하류부에서는 수위가 감소하여 최저 수위가 나타났으며 수위변화가 매우 불규칙하게 나타났다. 또한 교각설치 직상류부와 하류부에서는 수위차가 크게 나타났으며 유속이 증가 할수록 수위차는 더욱 크게 나타났다. 동일개도비의 부유잡목 중 폭보다 깊이 방향으로의 크기가 증가하고 유속이 증가함에 따라 교량 하류부의 유속이 매우 크게 증가하여 교량피해에 큰 영향을 줄 것으로 판단되며 교각의 하류부 또한 매우 불규칙한 유황으로 인한 피해도 우려된다.

  • PDF

Analysis of Flow Characteristics of Debris Flow in the Topography Considering Buildings (건물을 고려한 지형에서의 토석류 유동특성 분석)

  • Kang, Bae Dong;Jun, Kye won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.228-228
    • /
    • 2022
  • 최근 이상기후로 인해 단시간에 다량의 강우가 내리는 현상이 발생하고 있으며, 이는 급경사면의 지반을 포화시켜 붕괴에 이르게 하여 유수와 붕괴된 토사가 계곡을 따라 흐르는 토석류 재해로 이어진다. 토석류는 빠른 속도로 유하하여 인명과 주거 및 도로 등의 시설에 피해를 발생시킨다. 토석류를 해석하기 위한 연구방법에는 피해지역의 현장조사와 모형실험을 이용하는 방법, 수치모형을 이용하는 방법 등이 있다. 현장조사와 모형실험에는 고가의 장비와 많은 인력 및 비용이 소요되어 수치모형을 이용한 연구가 주로 이뤄지고 있으며, 피해지역의 건물, 도로 등의 시설물을 고려한 지형을 제작하여 토석류 수치모형에 적용한 연구도 진행되고 있다. 본 연구에서는 태풍 미탁의 영향으로 시간당 최대 110mm/hr, 누적강수량 487mm로 인해 토석류 재해가 발생한 강원도 삼척시 원덕읍을 연구대상지로 선정하였으며, 토석류 해석 시 침식과 퇴적작용을 고려할 수 있는 Hyper KANAKO 모형을 적용하였다. 토석류 수치모의 시 건물의 유무를 고려하여 지형자료를 구축하고 Hyper KANAKO 모형을 적용하였다. 건물이 미고려된 지형에서는 실제 토석류가 이동한 거리와 피해면적에 비해 과다하게 모의 되는 특징이 나타났으나, 건물이 고려된 지형에서는 실제 피해와 유사한 이동거리, 유동심 및 피해면적을 나타내었다. 이는 토석류 발생 위험지역에 대한 모의 시 건물을 고려함으로써 피해범위와 규모를 건물 미고려시 보다 정확하게 예측할 수 있어 토석류 저감계획 수립 및 피해지 분석시 활용성이 가능할 것으로 판단된다.

  • PDF

Characteristics of Rainfall Thresholds for the Initiation of Landslides at Chuncheon Province (춘천시에서 발생한 산사태 유발강우의 특성 분석)

  • Sang Ug, Kim;Kyong Oh, Baek
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.148-157
    • /
    • 2022
  • Every year, particularly during the monsoon rainy season, landslides at the Chuncheon province of South Korea cause tremendous damage to lives, properties, and infrastructures. More so, the high rainfall intensity and long rainfall days that occurred in 2020 have increased the water content in the soil, thereby increasing the chances of landslide occurrences. Besides this, the rainfall thresholds and characteristics responsible for the initiation of landslides in this region have not been properly identified. Therefore, this paper addresses the rainfall thresholds responsible for the initiation of landslides at Chuncheon from a regional perspective. Using data obtained from rainfall measurements taken from 2002 to 2011, we identify a threshold relationship between rainfall intensity and rainfall duration for the initiation of landslides. In addition, we identify the relationship between the rainfall intensity using a 3-day, 7-day, and 10-day antecedent rainfall observation. Specifically, we estimate the rainfall data at 8 sites where debris flow occurred in 2011 by kriging. Following this, the estimated data are used to construct the relationship between the intensity (I), duration (D), and frequency (F) of rainfall. The results of the intensity-duration-frequency (IDF) analysis show that landslides will occur under a rainfall frequency below a 2-year return period at two areas in Chuncheon. These results will be effectively used to design structures that can prevent the occurrence of landslides in the future.

Analysis of Sediment Reduction with VFS and Diversion Channel with Enhancements in SWAT Landuse-Subbasin Overland Flow and VFS Modules

  • Park, Youn-Shik;Kim, Jong-Gun;Kim, Nam-Won;Engel, Bernie;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.752-757
    • /
    • 2009
  • In the last decade, many methods such as greet chamber, reservoir, or debris barrier, have been utilized to manage and prevent muddy water problem. The Vegetative Filter Strip (VFS) has been thought to be one of the most effective methods to trap sediment effectively. The VFS are usually installed at the edge of agricultural areas adjacent to stream or drainage ditches, and it has been shown that the VFS effectively removes pollutants transported with upland runoff. But, if the VFS is installed without any scientific analysis of rainfall-runoff characteristics, soil erosion, and sediment analysis, it may not reduce the sediment as much as expected. Although Soil and Water Assessment Tool (SWAT) model has been used worldwide for many hydrologic and Non-Point Source Pollution (NPSP) analysis at a watershed scale. but it has many limitations in simulating the VFS. Because it considers only 'filter strip width' when the model estimates sediment trapping efficiency, and does not consider the routing of sediment with overland flow option which is expected to maximize the sediment trapping efficiency from upper agricultural subbasin to lower spatially-explicit filter strip. Therefore, the SWAT overland flow option between landuse-subbasins with sediment routing capability was enhanced with modifications in SWAT watershed configuration and SWAT engine. The enhanced SWAT can simulate the sediment trapping efficiency of the VFS in the similar way as the desktop VFSMOD-w system does. Also it now can simulate the effects of overland flow from upper subbasin to reflect the increased runoff volume at the receiving subbasin, which is what is occurring at the field if no diversion channel is installed. In this study, the enhanced SWAT model was applied to small watershed located at Jaun-ri in South Korea to simulate diversion channel and spatially-explicit VFS. It was found that approximately sediment can be reduced by 31%, 65%, 68%, with diversion channel, the VFS, and the VFS with diversion channel, respectively.

  • PDF

Types and Characteristics of Landslides in Danyang Geopark (단양 지질공원 내의 산사태 유형과 특징)

  • Seong-Woo Moon;Ho-Geun Kim;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.427-438
    • /
    • 2023
  • We carried out a geological survey to classify the types of mass movement in Danyang Geopark (where various rock types are distributed) and analyzed the mechanical and hydraulic characteristics of landslide materials using a series of laboratory tests. Debris flows occurred in areas of limestone/marble, shale, and porphyroblastic gneiss, and limestone/marble landslides were distinguished from the others through the presence of karren topography. Soil tests showed that soil derived from weathered gneiss, which has a higher proportion of coarse grains, has a higher friction angle, lower cohesion, and larger hydraulic conductivity than soils from areas of limestone/marble, and shale. Rock failure mass movements occurred in areas of phyllite, sandstone, and conglomerate and were subdivided into plane failure, block-fall, and boulder-fall types in areas of phyllite, sandstone, and conglomerate, respectively. The shear strength of phyllite is much lower than that of the other types of rock, which have similar rock quality. The slake durability index of the conglomerate is similar to that of the other rock types, which have similar degrees of weathering, but differential weathering of the matrix and clasts was clearly observed when comparing the samples before and after the test. This study can help establish appropriate reinforcement and disaster prevention measures, which depend on the type of mass movement expected given the geological characteristics of an area.

Production of Realistic Explosion Effects through Four Types of Solutions (4가지 솔루션을 통한 사실적인 폭발효과 제작)

  • Kim, Dong Sik;Hwang, Min Sik;Lee, Hyun Seok;Kim, Yong Hee;Yun, Tae Soo
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.120-129
    • /
    • 2015
  • Explosion effect on CG (Computer Graphic) a visual effect on which a higher degree of technological difficulty is required with a variety of effect elements such as Fire, Smoke, Flame, Dust, Debris, etc. integrated on it. As skills for CG software have been advanced, solutions loaded with functions of various fluid simulation have been developed. So more realistic special effects came to be available. However, in Korea, it depends just on CG program functions. Besides, enough R&D's concerned have not been followed up. Accordingly, this study is aimed at offering a production method that may effectively implement more realistic explosion effects under experimentations. To begin with, the study derives problems through a precedent study of the implementation of existing explosion effects. Then to solve them, experimental studies are performed depending on four solutions. There are accesses to the four solutions: first, Numerous Turbulent Flow, a method to allow an attribute of turbulent air in the stage of fluid simulation; second, Cache Retiming Solution produced in script; third, Multiple Volume Container based on cached data; and fourth, RGB Lighting Pipeline, a method to enhance the completion of the result from the stage of composition. Characteristics of effects applied in each stage and consecutive connections of them proved the effective implementation of more realistic explosion effects. This study may not only suppose the production method for efficient explosion effects differentiated from the previous ones but also be utilized as basic data for relevant researches.