• Title/Summary/Keyword: characteristics of current limiting

Search Result 323, Processing Time 0.027 seconds

Anaysis of resistance variance of Resistive type high-Tc superconducting fault current limiter (저항형 고온 초전도 전류제한기의 저항변화 분석)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Chung, Hun-Sang;Choi, Chang-Joo;Hyun, Ok-Bae;Chung, Dong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.547-550
    • /
    • 2004
  • Superconducting fault current limiter(SFCL) is expected to be introduced into electric power system in future as an effective countermeasure for the increase of the short-circuit current due to the growth of the electric power system. SFCL has a merit that the fault current can be limited by the resistance generated when a superconductor transits from a superconducting state to a normal state without additional detecting device. In this paper, we investigated the resistance variance of resistive type SFCL and the fault current limiting characteristics due to the amplitude of source voltage. We could obtain the more effective fault current limiting characteristics of SFCL as the source voltage increased.

  • PDF

Fault Current Limiting Characteristic of Flux-Lock Type HTSC Fault Current Limiter (자속구속형 고온초전도 전류제한기 사고전류제한 특성)

  • Lim, Sung-Hun;Choi, Myung-Ho;Park, Bok-Kee;Song, Jee-Joo;Park, Dae-Hee;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.105-108
    • /
    • 2002
  • In this paper, we investigated the fault current limiting characteristic of flux-lock type High-Tc superconducting fault current limiter(HTSC-FCL), which is comprised of a flux-lock reactor and an external magnetic field coil covering the HTSC element In this HTSC-FCL, the initial limiting current level can be controlled by adjusting the inductance of the each coil. Furthermore, the fault current limiting characteristics of HTSC-FCL can be improved by applying 'the external magnetic field into the HTSC element We performed the computer simulation by numerical analysis about the flux-lock type HTSC-FCL and compared the results of experiment with simulation ones. We can obtain the same results from both the computer simulation and the experiment except for the time immediately after fault occurs.

  • PDF

A study on the effective fault current limiting characteristics of stacked coated conductors with stainless steel stabilizer (스테인리스 스틸 안정화재를 가진 coated conductor의 적층 유무에 따른 효과적인 사고전류 제한을 위한 연구)

  • Na, J.B.;Ahn, M.C.;Kim, M.J.;Kim, Y.J.;Yang, S.E.;Park, D.K.;Kim, H.M.;Seok, B.Y.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2007
  • Coated conductor(CC) is recently in actively progress for the research and development, and its can be used various stabilizer lot the specific requirements for each application. Among various superconducting applications, coated conductor applied to superconducting fault current limiters(SFCLS) bypasses fault current to its stabilizer, where the surge is abruptly reduced ; thus, stainless steel, which has large resistivity can be a suitable stabilizer for SFCLS. Despite high n-value of the YBCO, CC stabilized with stainless steel did not effectively limit the first peak fault current. In the short circuit test results of AMSC's 344S, a half period delay was observed between the fault and the generation of resistance(60Hz). In this paper, we performed short-circuit experiments with stacked and unstacked CC and compared the test results to analyze effective fault current limiting characteristics. we compared time of the generated resistance as the fault current limiting characteristics and made the samples one is the stacked CC and the other is unstacked CC. These samples were used equal numbers of pieces of CC. In addition, comparison and analysis was made for the stacked structure by measuring fault current limiting characteristics with respect to thermal insulation by impregnating with epoxy resin.

Operational Characteristics of the FCL Using the Mechanical Contact in the Power System (기계적 접점을 이용한 FCL의 동작 특성)

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.878-882
    • /
    • 2016
  • These days, SFCLs are being developed in order to limit fault current. However, the superconducting elements that limit the fault current have such problems as capacity increase and require auxiliary devices including cooling device. If devices that comprise the current power network can withstand fault current for at least one cycle, it is possible to limit the fault current with current limiting elements by bypassing it on the fault line. In this study, the fault current limiter was configured with current transformer, vacuum interrupter, and current limiting element. Through the experience, it was confirmed that the fault current was limited within one cycle. The superconducting element, as a current limiting element, limited the fault current by 80 % within one cycle from fault occurrence, and the passive element limited it more than 95 %. Also, through the comparison between resistance curve and power consumption curve, it was confirmed that the current limiting element using a passive element was more stable than the superconducting element that required capacity increase and other auxiliary devices. It was considered that the FCL proposed in this study could limit fault current stably within one cycle from fault occurrence by using the existing power technologies such as fault current detection and solenoid valve operating circuit.

Limiting Current Characteristics using Superconducting Fault Current Limiter on Neutral Line of Main Transformer in Distribution Substation (배전용 변전소 주변압기 중성점에 초전도 전류제한기 적용시 전류제한특성 분석)

  • Kim, Jin-Seok;Kim, Myoung-Hoo;You, Il-Kyoung;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.14_15
    • /
    • 2009
  • In this paper, the effect of SFCL which was applied on neutral line of main transformer in distribution substation was analyzed in addition to the position of SFCL among some cases which are studied. The result about the limiting current was compared with the effect with SFCL applied on feeder. The limiting current characteristics are similar to the effect of SFCL on feeder. Therefore, this application of SFCL is required to protection coordination such as SFCL is applied on feeder.

  • PDF

Characteristics of Transformer-Type SFCL according to the Connecting Methods of Secondary Coils (2차 권선의 연결방법에 따른 변압기형 초전도 한류기의 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Chung, Soo-Bok;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2078-2083
    • /
    • 2007
  • We have analyzed operating characteristics of transformer-type superconducting fault current limiter (SFCL) according to the serial or parallel connections of secondary coils with $YBa_2Cu_3O_7$ (YBCO) thin films. The turn ratio between the primary and secondary coils was 63:21. Transformer-type SFCL using a transformer with secondary winding of serial or parallel coils could reduce the unbalanced quench caused by differences of the critical current density between YBCO thin films. We found that transformer-type SFCL having serial or parallel connections induced simultaneous quench between the superconducting units. The limiting current in the transformer-type SFCL with a parallel connection was lowered to 30 % compared to the SFCL with a serial connection. In the meantime, when the currents generated in the superconducting units were similar, the voltage value in the parallel connection was 60 % as low as that in the serial connection. However, the voltage generated in the primary winding was some higher. In conclusion, we found that transformer-type SFCL with parallel connection of secondary coils was more effective in fault current limiting characteristics and in the reduction of the consumption power for superconducting units compared to those of the transformer-type SFCL with serial connection of secondary coils.

Analysis of Fault Current Limiting Characteristics According to Variation of Inductances in Separated Three-phase Flux-lock Type SFCL (분리된 삼상자속구속형 전류제한기의 인덕턴스 변화에 따른 전류제한 특성 분석)

  • Doo, Seung-Gyu;Du, Ho-Ik;Kim, Min-Ju;Park, Chung-Ryul;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.522-525
    • /
    • 2009
  • We investigated the fault current characteristics of the separates three-phase flux-lock type superconducting fault current limiter(SFCL) according to the variation of inductances. The single-phase flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil on an iron core. And superconductor is series connected on secondary coil. Superconductor is using the YBCO coated conductor. The separated three-phase flux-lock type SFCL consists of single-phase flux-phase type SFCL in each phase. To analyze the current limiting characteristics of a three-phase flux-lock type SFCL, the short circuit experiments were carried out fault such as the triple line-to-ground fault. The experimental result shows that fault current limiting characteristics of additive polarity winding was better than subtractive polarity winding and when the inductances of coil 2 was lower, resistances of YBCO CC was more generated.

Empirical Modeling on the Breaking Characteristics of Power Current Limited Fuse (전력용 백업퓨우즈 차단특성 모델링)

  • Lee Sei-Hyun;Lee Bvung-Sung;Han Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.391-396
    • /
    • 2005
  • In this paper the modeling of interrupting characteristics of a high voltage current limiting fuse to be used in a power distribution system is introduced. In order to reduce the level of energy which can be absorbed by equipment during fault current flow, a high voltage current limiting fuse can generate a high voltage at the fuse terminals. Consequently it is necessary to model and analyze precisely the voltage and current variation during a CL fuse action. The characteristics of CL fuse operation modeled by electrical components have been performed with less than 6 [$\%$] errors. So the fuse designer or manufacturer can estimate the characteristics of CL fuse operation by using this modeling. The Electro Magnetic Transient Program (EMTP) is used to develop the modeling.

Recovery Characteristic of Flux-Lock Type SFCL (자속구속형 초전도 사고전류제한기의 회복특성)

  • Lim, Sung-Hun;Han, Tae-Hee;Park, Hyoung-Min;Cho, Yong-Sun;Song, Jae-Joo;Choi, Myoung-Ho;Hwang, Jong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.188-189
    • /
    • 2006
  • The flux-lock type superconducting fault current limiter (SFCL) has the attractive characteristics that can adjust the current limiting level by the turns ratio and the winding direction of two coils. To apply this type SFCL into power system, the analysis for the recovery characteristics of it together with the current limiting characteristic is needed. In this paper, the experiments of the current limiting and the recovery characteristics of the flux-lock type SFCL with YBCO thin film were performed. The recovery characteristics of the flux-lock type SFCL dependent on the winding direction of two coils were analyzed through the comparison with the resistive type SFCL.

  • PDF

Test of a Current Limiting Module for Verifying of the SFCL Design (초전도 한류기 설계 검증을 위한 초전도 한류 모듈 단락 특성 시험)

  • Yang, S.E.;Kim, W.S.;Lee, J.Y.;Kim, H.;Yu, S.D.;Hyun, O.B.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.13-17
    • /
    • 2012
  • KEPCO Research Institute has been researching a Superconducting Fault Current Limiter (SFCL) which is considered one of solutions of fault current problems with Korea Institute of Machinery & Materials (KIMM) and Hanyang University since 2011. In this paper, we fabricated a current limiting module and conducted electrical short circuit tests for checking the validity of the transmission level SFCL design. Based on the short circuit characteristics of the second generation High Temperature Superconductor (HTS), we analyzed the short circuit characteristics of 3 parallel connected superconducting wires. The structure of the HTS wire is as follows: the stainless steel stabilizer of $100{\mu}m$ is laminated on the superconductor layer and under the substrate, both of which are electrically jointed with solder. We fabricated the current limiting module which has 40 series and 6 parallel connections and studied the short circuit characteristics of the module under various voltage levels.