• Title/Summary/Keyword: characteristics of current limiting

Search Result 324, Processing Time 0.026 seconds

Current limiting characteristics of the resistive SFCL using YBCO film (YBCO film을 이용한 저항형 초전도 한류기의 전류제한 특성)

  • Choi, Hyo-Sang;Kim, Hye-Rim;Hwang, Si-Dole;Hyun, Ok-Bae;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.277-280
    • /
    • 1999
  • We fabricated a resistive superconducting fault current limiter of two stripe meander type based on a YBCO film, and performed current limitation experiments. In order to disperse the heat generated at hot spots in the YBCO film the film was coated with a gold shunt layer. At $0^{\circ}$ fault angle the minimum quench current was $9.6 A_{peak}$(meander line cross section: $5{\times}10^{-6}cm^2$) and the fast quench time was 0.63 msec. The resistance of the limiter continued to increase for three cycles due to heat generation in the gold layer and was stabilized afterwards. At $45^{\circ}$ and $90^{\circ}$ the fast quench time were 0.56 msec and 0.26 msec, respectively. The quench time is believed to be reduced because faults occurred when the current was increasing or was at the peak value. With the limiter we could effectively limit the fault current about 1/5 times right after the fault and about 1/8.5 times three cycles after.

  • PDF

Fabrication and fault test of 12 kVA class BSCCO SFCL element (12 kVA급 BSCCO 한류소자 제작 및 특성 실험)

  • Oh, S.Y.;Yim, S.W.;Kim, H.R.;Hyun, O.B.;Jang, G.E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • For the development of superconducting fault current limiters(SFCLs) having large current capacity, we fabricated an SFCL element that consists of Bi-2212 superconductor and Cu-Ni alloy tubes. First, Ag was plated on the surface of the Bi-2212 for the enhancement of soldering process. On the Ag-plated Bi-2212 tube, a Cu-Ni alloy tube was soldered using optimized solders and soldering conditions. The BSCCO/Cu-Ni composite was processed mechanically to have a helical shape for the improvement of the SFCL characteristics. The total current path of the SFCL element was 1330 mm long with 12 turns, and had critical current of 340 A at 77 K. Finally, we carried out the fault test using the fabricated SFCL element. It showed successful current limiting performance under the fault condition of 50 $V_{rms}$ and 5.5 kA. From the results, the rated voltage of the SFCL element was decided to be 0.4 V/cm, and the power capacity was 12 kVA at 77 K. The fabrication process of the SFCL and the fault test results will be presented.

Quench Characteristics of HTSC Elements according to fault types in Integrated Three-Phase (삼상일체화된 자속구속형 SFCL의 사고종류에 따른 소자들의 퀜치 특성)

  • Park, Chung-Ryul;Lee, Jong-Hwa;Park, Sig;Du, Ho-Ik;Lim, Sung-Hun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.960-962
    • /
    • 2005
  • In this paper, we investigated the quench characteristics of high-Tc superconducting(HTSC) elements in the integrated three-phase flux-lock type superconducting fault current limiter(SFCL) according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault, the line-to-line fault and the triple-line-to-ground fault. The integrated three-phase flux-lock type SFCL is an upgrade version of single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of a three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single one of three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases to quench irrespective of the fault type, which reduces the current in fault phase as well as the current of sound phase. It was obtained that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

RF Dispersion and Linearity Characteristics of AlGaN/InGaN/GaN HEMTs (AlGaN/InGaN/GaN HEMTs의 RF Dispersion과 선형성에 관한 연구)

  • Lee, Jong-Uk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.29-34
    • /
    • 2004
  • This paper reports the RF dispersion and linearity characteristics of unpassivated AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beam epitaxy (MBE). The devices with a 0.5 ${\mu}{\textrm}{m}$ gate-length exhibited relatively good DC characteristics with a maximum drain current of 730 mA/mm and a peak g$_{m}$ of 156 mS/mm. Highly linear characteristic was observed by relatively flat DC transconductance (g$_{m}$) and good inter-modulation distortion characteristics, which indicates tight channel carrier confinement of the InGaN channel. Little current collapse in pulse I-V and load-pull measurements was observed at elevated temperatures and a relatively high power density of 1.8 W/mm was obtained at 2 GHz. These results indicate that current collapse related with surface states will not be a power limiting factor for the AlGaN/InGaN HEMTs.

Effcets od pH and supporting salts on electrogalvanized coaying in sulfate bath (황산욕에서 아연의 피막특성에 미치는 pH 및 지지염의 영향)

  • 조용균;김영근;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.24-33
    • /
    • 1998
  • Effects of pH and supporting salts on the characteristics of electrogalvanzied coating in sulfate bath are investigated. The fine grain size is obtained and the whiteness with the amount of supporting salts or pH increased at more than current density of 100A/$dm^2$<\TEX>, With supporting salts increased, the electro-conductivity of the bulk solution increases and the cell voltage decreases, while the width of the cathode burned edge gets wider because it seems that the increased overpotential the vicinity of cathode causes the decreases, of limiting current density. When the amount of supporting salts or pH of sulfate bath decreases, the zinc crystals have preferred orientation (001) planes. However when the amount of supporting salts or pH increase, the crystal texture has less (001) planes and gets to have random crystal planes.

  • PDF

Modeling and parametric studies of PEM fuel cell performance (운전 조건에 따른 PEM 연료전지 모델링 및 성능 분석)

  • Noh, Young-Woo;Kim, Sae-Hoon;Jeong, Kwi-Seong;Son, Ik-Jae;Han, Kook-Il;Ahn, Byung-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.209-216
    • /
    • 2008
  • In the present study, a mathematical model has been formulated for the performance of polymer electrolyte fuel cells. Modify the concentration polarization equation using concentration coefficient that represents the characteristics of bipolar plate reactant distribution. The model predictions have been compared with experimental results and good agreement has been demonstrated for the cell polarization curves. The effects of operating parameters on the performance of fuel cells have been studied. Increases of operation pressure reduce the effect of temperature on the performance.

An Experimental Study on the Small Capacity EHD Power Generation (소용량 EHD 발전에 관한 실험적 연구)

  • Jhoun, C.S.;Lee, J.B.;Lim, E.C.
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.58-68
    • /
    • 1989
  • This paper describes an experimental study that was performed to determine the limiting factors on the power output in the closed cycle Electro-Hydro-Dynamic generator of small capacity. A corona discharge for producing unipolar charged particles used as the charging method. The experiment demonstrated that the corona method of charging was an efficient and effective means of producing unipolar charged particles. Four factors having an effect on the power output characteristics of EHD generator are discussed and examined experimentally, using methyl alcohol and kerosene as working fluides; a. The conversion length between attractor and collector. b. The corona current of Emitter. c. The flow velocity of working fluids. d. Load resistance. This results are as follows; 1) There in a critical value in conversion length for its maximum power output. 2) Power output increases almost linearly with corona current and flow velocity. 3) There is the critical value of load resistance producing a maximum power output. 4) Kerosene is known better working fluid than Methyl alcohol in this EHD generator.

  • PDF

The analysis of Current limiting Characteristics of Magnetic Shielding Type Fault Current Limiter (차폐 유도형 전류 제한기의 전류제한 해석 연구)

  • Lee, Jae;Lim, Sung-Hun;Ko, Seok-Cheol;Du, Ho-Ik;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.94-96
    • /
    • 2001
  • 본 논문은 차폐유도형 고온초전도 한류기의 전류제한 특성을 연구하였다. 회로해석은 유한 차분법(FDM)을 사용하였으며 회로 설계의 변수 값에 따라서 전류제한 방식은 저항형과 유도형으로 전류 제한이 이루어짐을 알 수 있었다. 사고 발생 시 나타나는 고온초전도 한류기의 임피던스는 사고 전류를 제한하는 주요한 요소로써 다양한 파라미터 값의 변화를 통하여 고온 초전도한류기의 임피던스 변화와 특성을 관찰하였고, 본 논문에서 설계한 형태의 임피던스 변화에 따른 전류 제한 효과를 저항형 과 유도형 방식으로 제어 가능함을 확인할 수 있었다.

  • PDF

Analysis Operating Characteristics of Matrix-Type Superconducting Fault Current Limiter in Ground Faults of Power Grid (전력계통의 지락사고에 대한 매트릭스형 초전도 한류기의 동작특성)

  • Oh, Kum-Gon;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Seong-Bo;Kim, Deog-Goo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.14-20
    • /
    • 2009
  • It is very important for power stability to suppress the excessive fault current happened frequently in the real power grid The superconducting fault current limiter (SFCL) is one of the most effective ways to reduce the fault current among the facilities developed so far. In this paper, we have investigated the operating characteristics of the power grid with the SFCL according to three types such as the single, double and triple line-to-ground faults. In addition, we analyzed the consumption power of the superconducting units based on the working data of the SFCL. We confirmed that the fault current could be limited lower than its peak value to 85 percentage in initial fault condition and to 85 percentage after one cycle in the matrix-type SFCL. The consumption powers of the superconducting units were almost equal by reduction of the difference of the critical current between superconducting units element.

Partially-insulated MOSFET (PiFET) and Its Application to DRAM Cell Transistor

  • Oh, Chang-Woo;Kim, Sung-Hwan;Yeo, Kyoung-Hwan;Kim, Sung-Min;Kim, Min-Sang;Choe, Jeong-Dong;Kim, Dong-Won;Park, Dong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • In this article, we evaluated the structural merits and the validity of a partially insulated MOSFET (PiFET) through the fabrication of prototype transistors and an 80 nm 512M DDR DRAM with partially-insulated cell array transistors (PiCATs). The PiFETs showed the outstanding short channel effect immunity and off-current characteristics over the conventional MOSFET, resulting from self-induced halo region, self-limiting SID shallow junction, and reduced junction area due to PiOX layer formation. The DRAM with PiCATs also showed excellent data retention time. Thus, the PiFET can be a promising alternative for ultimate scaling of planar MOSFET.