• 제목/요약/키워드: character segmentation

검색결과 173건 처리시간 0.026초

심층신경망을 이용한 PCB 부품의 인쇄문자 인식 (Recognition of Characters Printed on PCB Components Using Deep Neural Networks)

  • 조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.6-10
    • /
    • 2021
  • Recognition of characters printed or marked on the PCB components from images captured using cameras is an important task in PCB components inspection systems. Previous optical character recognition (OCR) of PCB components typically consists of two stages: character segmentation and classification of each segmented character. However, character segmentation often fails due to corrupted characters, low image contrast, etc. Thus, OCR without character segmentation is desirable and increasingly used via deep neural networks. Typical implementation based on deep neural nets without character segmentation includes convolutional neural network followed by recurrent neural network (RNN). However, one disadvantage of this approach is slow execution due to RNN layers. LPRNet is a segmentation-free character recognition network with excellent accuracy proved in license plate recognition. LPRNet uses a wide convolution instead of RNN, thus enabling fast inference. In this paper, LPRNet was adapted for recognizing characters printed on PCB components with fast execution and high accuracy. Initial training with synthetic images followed by fine-tuning on real text images yielded accurate recognition. This net can be further optimized on Intel CPU using OpenVINO tool kit. The optimized version of the network can be run in real-time faster than even GPU.

저품질 이진 우편 영상에서의 고속 문자 분할 (High-Speed Character Segmentation from Low-Quality Binary Letter Image)

  • 김두식;남윤석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.145-148
    • /
    • 2000
  • This paper proposes a character segmentation method for Korean letter address image. The poor quality of image binarization results in broken character strokes. To overcome this problem, two steps of processing ate introduced. The first one is to merge broken characters to generate character candidates, and the other one is to reduce the complexity of segmentation graph path. These two steps do not use recognition information to keep in high-speed.

  • PDF

한글 인쇄체 문자의 형식 분류 및 비선형적 자소 분리에 관한 연구 (A Study on Korean Printed Character Type Classification And Nonlinear Grapheme Segmentation)

  • 박용민;김도현;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.784-787
    • /
    • 2006
  • 본 논문에서는 한글 인쇄체 문자의 자소를 비선형적으로 분리하는 방법을 제안한다. 자소 분리 대상 문자는 자소의 조합 방식에 따라 6개의 형식으로 분류한다. 인쇄체 한글의 6형식 분류를 위해 그레이 레벨의 문자 이미지로부터 망 특성과 수직 수평 투영 기법을 이용해 특징을 추출하고, 오류 역전파 기법을 이용하여 분류를 시도한다. 분류된 문자 형식을 기반으로 분리 후보 영역을 지정하고, 이 영역을 기반으로 다단식 그래프 탐색 알고리즘을 이용하여 최적의 비선형적 자소 분리 경로를 찾아낸다. 실험 결과, 제안한 방법은 한글의 6형식 분류에 적합하였으며, 자소가 서로 붙어 선형적으로 분리가 어려운 문자의 자소 분리에 좋은 성능을 나타내었다.

  • PDF

Typographical Analyses and Classes in Optical Character Recognition

  • Jung, Min-Chul
    • 한국산학기술학회논문지
    • /
    • 제5권1호
    • /
    • pp.21-25
    • /
    • 2004
  • This paper presents a typographical analyses and classes. Typographical analysis is an indispensable tool for machine-printed character recognition in English. This analysis is a preliminary step for character segmentation in OCR. This paper is divided into two parts. In the first part, word typographical classes from words are defined by the word typographical analysis. In the second part, character typographical classes from connected components are defined by the character typographical analysis. The character typographical classes are used in the character segmentation.

  • PDF

License Plate Recognition System Using Artificial Neural Networks

  • Turkyilmaz, Ibrahim;Kacan, Kirami
    • ETRI Journal
    • /
    • 제39권2호
    • /
    • pp.163-172
    • /
    • 2017
  • A high performance license plate recognition system (LPRS) is proposed in this work. The proposed LPRS is composed of the following three main stages: (i) plate region determination, (ii) character segmentation, and (iii) character recognition. During the plate region determination stage, the image is enhanced by image processing algorithms to increase system performance. The rectangular license plate region is obtained using edge-based image processing methods on the binarized image. With the help of skew correction, the plate region is prepared for the character segmentation stage. Characters are separated from each other using vertical projections on the plate region. Segmented characters are prepared for the character recognition stage by a thinning process. At the character recognition stage, a three-layer feedforward artificial neural network using a backpropagation learning algorithm is constructed and the characters are determined.

문자 인식에서 단어 간의 활자 인쇄선 위치 분석과 클래스 분류 (Typographical Analyses and Classes of Characters and Words in Optical Character Recognition)

  • 정민철
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.337-342
    • /
    • 2005
  • 본 논문은 활자 인쇄선 분석과 이에 따른 클래스 분류를 제안한다. 활자 인쇄선 분석은 영문 인쇄체 인식에 있어 불가결한 요소이다. 활자 인쇄선 분석은 문자 인식에서 문자 분할을 위한 전처리 단계이다. 본 논문은 두 부분으로 나뉘는데, 첫 부분에서는 단어 간 활자 인쇄선 분석을 통한 단어 활자선 클래스를 정의한다. 두 번째 부분에서는 문자 간 활자 인쇄선 분석을 통한 문자 활자선 클래스를 정의한다. 이렇게 정의된 단어 활자선 클래스와 문자 활자선 클래스는 문자 분할시 정확한 문자 분할을 위하여 사용된다.

Best Combination of Binarization Methods for License Plate Character Segmentation

  • Yoon, Youngwoo;Ban, Kyu-Dae;Yoon, Hosub;Lee, Jaeyeon;Kim, Jaehong
    • ETRI Journal
    • /
    • 제35권3호
    • /
    • pp.491-500
    • /
    • 2013
  • A connected component analysis from a binary image is a popular character segmentation method but occasionally fails to segment the characters owing to image noise and uneven illumination. A multimethod binarization scheme that incorporates two or more binary images is a novel solution, but selection of binarization methods has never been analyzed before. This paper reveals the best combination of binarization methods and parameters and presents an in-depth analysis of the multimethod binarization scheme for better character segmentation. We carry out an extensive quantitative evaluation, which shows a significant improvement over conventional single-method binarization methods. Experiment results of six binarization methods and their combinations with different test images are presented.

A Study on the Preprocessing Method Using Construction of Watershed for Character Image segmentation

  • Nam Sang Yep;Choi Young Kyoo;Kwon Yun Jung;Lee Sung Chang
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.814-818
    • /
    • 2004
  • Off-line handwritten character recognition is in difficulty of incomplete preprocessing because it has not dynamic and timing information besides has various handwriting, extreme overlap of the consonant and vowel and many error image of stroke. Consequently off-line handwritten character recognition needs to study about preprocessing of various methods such as binarization and thinning. This paper considers running time of watershed algorithm and the quality of resulting image as preprocessing For off-line handwritten Korean character recognition. So it proposes application of effective watershed algorithm for segmentation of character region and background region in gray level character image and segmentation function for binarization image and segmentation function for binarization by extracted watershed image. Besides it proposes thinning methods which effectively extracts skeleton through conditional test mask considering running time and quality. of skeleton, estimates efficiency of existing methods and this paper's methods as running time and quality. Watershed image conversion uses prewitt operator for gradient image conversion, extracts local minima considering 8-neighborhood pixel. And methods by using difference of mean value is used in region merging step, Converted watershed image by means of this methods separates effectively character region and background region applying to segmentation function. Average execution time on the previous method was 2.16 second and on this paper method was 1.72 second. We prove that this paper's method removed noise effectively with overlap stroke as compared with the previous method.

  • PDF

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

원격 자동 검침을 위한 효과적인 계량기 숫자 분할 (An Efficient Numeric Character Segmentation of Metering Devices for Remote Automatic Meter Reading)

  • 보반 토안;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.737-747
    • /
    • 2012
  • 최근 들어, 기존 계량기에서의 원격 자동 검침을 지원하기 위한 영상 기반 계량기 데이터 숫자 인식에 대한 관심이 증대되고 있다. 성공적인 숫자 인식을 달성하는 데 숫자 분할은 매우 중요한 과정이다. 본 논문에서는 다양한 조명하의 다양한 계량기들에 대해서 잘 수행되는 효과적인 계량기 숫자 분할 방법을 제안한다. 제안된 계량기 숫자 분할 방법은 먼저 계량기 전체 숫자 영역을 정교한 관심영역으로 검출하고, 이후 검출된 관심영역에서 각 숫자를 분할하는 2단계로 구성된다. 정교한 관심영역 검출은 조명 개선 전처리 후에 수평 라인 세그먼트를 이용한 개략적 관심영역 추출, 이진화후 수직 및 수평 투영을 이용한 클리핑을 통한 개략 관심영역 정교화 등의 과정으로 처리된다. 검출된 관심영역에서의 숫자 분할은 '숫자 구역 수직 분할' 및 '수직 분할된 각 숫자 구역에서의 숫자 분할' 등의 2개 과정을 통해 안정적으로 분할되도록 처리된다. 저대비, 저저도, 음영, 포화 등 다양한 조명 환경하의 다양한 계량기 종류에 대해 직접 촬영하여 자체 제작한 계량기 이미지 데이터베이스에 기반한 실험을 통해 본 논문에서 제안한 숫자 분할 방법을 평가하고, 제안방법이 다양한 조명 환경하의 다양한 계량기 타입에 대해서 계량기 숫자를 효과적으로 잘 분할함을 확인하였다.