• 제목/요약/키워드: chaotic neural networks

검색결과 66건 처리시간 0.033초

Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 제어기 설계 (Controller Design using PreFilter Type Chaotic Neural Networks Compensator)

  • 최운하;김상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.651-653
    • /
    • 1998
  • This thesis propose the prefilter type control strategies using modified chaotic neural networks #or the trajectory control of robotic manipulator. Since the structure of chaotic neural networks and neurons, chaotic neural networks can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis PUMA robot is designed by CNN. The CNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on- line learning and the performance is excellent. The CNN controller have much better controllability and shorter calculation time compared to the RNN controller. Another advantage of the proposed controller could be attached to conventional robot controller without hardware changes.

  • PDF

Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 로봇 제어기 설계 (Prefilter Type Velocity Compensating Robot Controller Design using Modified Chaotic Neural Networks)

  • 홍수동;최운하;김상희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권4호
    • /
    • pp.184-191
    • /
    • 2001
  • This paper proposes a prefilter type velocity compensating control system using modified chaotic neural networks for the trajectory control of robotic manipulator. Since the structure of modified chaotic neural networks(MCNN) and neurons have highly nonlinear dynamic characteristics, MCNN can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis robot manipulator is designed by MCNN. The MCNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on-line learning and the performance is excellent. The MCNN controller showed much better control performance and shorter calculation time compared to the RNN controller, Another advantage of the proposed controller could by attached to conventional robot controller without hardware changes.

  • PDF

유전 알고리듬을 이용한 퍼지 신경망의 최적화 및 혼돈 시계열 데이터 예측에의 응용 (The optimization of fuzzy neural network using genetic algorithms and its application to the prediction of the chaotic time series data)

  • 장욱;권오국;주영훈;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.708-711
    • /
    • 1997
  • This paper proposes the hybrid algorithm for the optimization of the structure and parameters of the fuzzy neural networks by genetic algorithms (GA) to improve the behaviour and the design of fuzzy neural networks. Fuzzy neural networks have a distinguishing feature in that they can possess the advantage of both neural networks and fuzzy systems. In this way, we can bring the low-level learning and computational power of neural networks into fuzzy systems and also high-level, human like IF-THEN rule thinking and reasoning of fuzzy systems into neural networks. As a result, there are many research works concerning the optimization of the structure and parameters of fuzzy neural networks. In this paper, we propose the hybrid algorithm that can optimize both the structure and parameters of fuzzy neural networks. Numerical example is provided to show the advantages of the proposed method.

  • PDF

퍼지 신경 회로망을 이용한 혼돈 비선형 시스템의 예측 제어기 설계 (Design of Predictive Controller for Chaotic Nonlinear Systems using Fuzzy Neural Networks)

  • 최종태;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.621-623
    • /
    • 2000
  • In this paper, the effective design method of the predictive controller using fuzzy neural networks(FNNs) is presented for the Intelligent control of chaotic nonlinear systems. In our design method of controller, predictor parameters are tuned by the error value between the actual output of a chaotic nonlinear system and that of a fuzzy neural network model. And the parameters of predictive controller using fuzzy neural network are tuned by the gradient descent method which uses control error value between the actual output of a chaotic nonlinear system and the reference signal. In order to evaluate the performance of our controller, it is applied to the Duffing system which are the representative continuous-time chaotic nonlinear systems and the Henon system which are representative discrete-time chaotic nonlinear systems.

  • PDF

웨이블렛 신경 회로망을 이용한 혼돈 비선형 시스템의 모델링 (The Modeling of Chaotic Nonlinear Systems Using Wavelet Neural Networks)

  • 박상우;최종태;윤태성;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2034-2036
    • /
    • 2002
  • In this paper, we propose the modeling of a chaotic nonlinear system using wavelet neural networks. In our modeling, we used the parameter adjusting method as the training method of a wavelet neural network. The difference between the actual output of a nonlinear chaotic system and that of a wavelet neural network adjusts the parameters of a wavelet neural network using the gradient-descent method. To verify the efficiency of this paper, we perform the simulation using Duffing system, which is a representative continuous time chaotic nonlinear system.

  • PDF

웨이블릿 신경 회로망을 이용한 혼돈 비선형 시스템에 대한 예측 제어기 설계 (The Design of Predictive Controller for Chaotic Nonlinear Systems Using Wavelet Neural Networks)

  • 박상우;최종태;최윤호;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.183-186
    • /
    • 2002
  • In this paper, a predictive control method using wavelet neural network for chaotic nonlinear systems is presented. In our method, we use the adjusting method of the parameter for the training a wavelet neural network. The control signals are directly obtained by minimizing the difference between a reference signal and the output of a wavelet neural network. To verify the efficiency of our method, we apply it to the Duffing and the Henon system, which are a representative continuous and discrete time chaotic nonlinear system respectively.

A Study and Implementation on Automatic Design of Artificial Neural Networks using Cellular Automa Techniques

  • Sim, Kwee-Bo;Lee, Dong-Wook;Ban, Chang-Bong;Kwak, Sang-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.115.2-115
    • /
    • 2001
  • This paper is the result of constructing information processing system such as living creatures´ brain based on artificial life techniques. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual has adapted itself to the environment through evolution. We present a new type of neural architecture consistiong of chaotic neurons and implementation. To evolve chaotic neural systems, we use cellular automata. In order to obtain the best neural networks in the environment, we evolve the arrangement of initial cells. The cell, that is neuron of neural networks, is modeled on chaotic ...

  • PDF

카오스 특징 추출에 의한 시계열 신호의 패턴인식 (Pattern recognition of time series data based on the chaotic feature extracrtion)

  • 이호섭;공성곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.294-297
    • /
    • 1996
  • This paper proposes the method to recognize of time series data based on the chaotic feature extraction. Features extract from time series data using the chaotic time series data analysis and the pattern recognition process is using a neural network classifier. In experiment, EEG(electroencephalograph) signals are extracted features by correlation dimension and Lyapunov experiments, and these features are classified by multilayer perceptron neural networks. Proposed chaotic feature extraction enhances recognition results from chaotic time series data.

  • PDF

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

연속 시간 혼돈 비선형 시스템을 위한 신경 회로망 제어기의 설계 ((Design of Neural Network Controller for Contiunous-Time Chaotic Nonlinear Systems))

  • 오기훈;최윤호;박진배;임계영
    • 전자공학회논문지SC
    • /
    • 제39권1호
    • /
    • pp.51-65
    • /
    • 2002
  • 본 논문에서는 혼돈 비선형 시스템의 지능 제어를 위해 간접 적응 제어 방식에 기초한 신경 회로망 제어기 설계 방법을 제안하였다. 제안된 제어 방법은 혼돈 비선형 시스템의 동정을 위해 다층 신경 회로망과 간단한 상태 공간 신경 회로망을 사용한 직-병렬 동정 구조를 이용하여 오프 라인으로 동정 과정을 수행하였으며, 학습된 혼돈 비선형 시스템에 대한 신경 회로망 모델을 사용하여 온 라인으로 제어를 수행하였다. 이때 혼돈 비선형 시스템의 동정 및 제어를 위한 학습 방법은 오차 역전파 방법을 사용하였다. 한편 본 논문에서 제안된 제어 방법을 연속 시간 혼돈 비선형 시스템인 Duffing 방정식과 Lorenz 방정식에 각각 적용하여 신경 회로망을 사용한 기존의 제어 방법과 컴퓨터 모의 실험을 통해 제어 성능을 비교 및 고찰하였다.