• 제목/요약/키워드: chaotic behavior

검색결과 125건 처리시간 0.268초

외부 환경을 가진 사랑 모델에서 컬러 잡음을 고려한 카오스 거동 현상 (Chaotic Behavior Phenomena in Love Model with External Environment considering Colored Noise)

  • 손영우;배영철
    • 한국전자통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.343-348
    • /
    • 2020
  • 지난 50년에 걸쳐 카오스 이론은 수학, 물리학에서 관심을 가지고 연구하기 시작하여 공학, 사회과학 분야에까지 연구가 확장되어왔다. 최근에는 자연과학과 사회과학을 융합한 융합 연구 형태로 발전하고 있다. 이러한 융합의 연구는 중독문제, 인간의 행복문제, 가족들 사이에서 발생하는 문제, 남녀 간의 사랑 문제를 포함한다. 본 논문에서는 이러한 융합 연구의 하나인 사랑 모델을 기반으로 외부 환경을 고려하고, 이 외부 환경에 컬러 잡음을 반영하였을 때, 사랑 모델에서 카오스 패턴이 어떤 영향을 받는지를 시계열 데이터와 위상공간을 통하여 검증한다.

Numerical investigation on multi-degree-freedom nonlinear chaotic vibration isolation

  • Jiang, Guoping;Tao, Weijun
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.643-650
    • /
    • 2014
  • A chaotic vibration isolation system is designed according to the chaotic vibration theory in this paper. The strong nonlinearity is generated by the system. Line spectra in the radiated noise maybe easily detected caused by marine vessels. It is Important to reduce the line spectra by improving the acoustic stealth of marine vessels. A multi-degree-freedom (MDF) nonlinear vibration isolation system (NVIS) system is setup by the experiment and finite element method. The model is established with finite element method. The results show that the behavior of the device gradually varies from period bifurcation into chaotic state and the line spectrum is changed from single spectral structure into broadband spectral structure. It is concluded that chaotic vibration isolation is preferable contrasted on line spectra isolation.

전압 제어형 카오스회로의 온도특성 해석 (Temperature Analysis of the Voltage Contolled Chaotic Circuit)

  • 박용수;주계초;송한정
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.3976-3982
    • /
    • 2013
  • 본 논문에서는 전압 제어형 카오스 신호 발생회로를 설계하고, 온도변화에 따른 특성을 해석 하였다. 제안하는 CMOS 회로로 이루어지며, 카오스 특성의 전압 제어형 오실레이터의 온도 변화에 따른 특성해석을 실시하였다. 제안하는 회로는 2상 클럭의 샘플앤드회로 3개의 MOS 소자로 이루어지는 비선형 함수 블록과 소스 팔로워로 이루어지는 레벨 쉬프터로 구성된다. SPICE 모의실험을 통하여 온도변화에 따른, 비선형함수의 전달함수 변화를 통하여, 분기도 특성, 주파수 특성 등의 카오스 다이나믹스가 변화됨변화됨을 확인 하였다. 또한 $25^{\circ}C$ 의 온도 조건에서, 제어전압 1.2 V-2.3 V 범위에서, 카오스 신호가 생성됨을 확인하였다.

Chaos in nonlinear control systems

  • Lee, Joon-Suh;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.758-762
    • /
    • 1994
  • Complicated dynamical behavior can occur in model reference adaptive control systems when two external sinusoidal signals are introduced although the plant and reference model are stable linear first older systems. The phase portrait plot and the power spectral analysis indicate chaotic behavior. In the system treated, a positive Lyapuniov exponent and non-integer dimension clearly manifest chaotic nature of the system.

  • PDF

Swimming Characteristics of the Black Porgy Acanthopagrus schlegeli in the Towing Cod-End of a Trawl

  • Kim Yong-Hae;Jang Chi Yeong
    • Fisheries and Aquatic Sciences
    • /
    • 제8권3호
    • /
    • pp.177-181
    • /
    • 2005
  • Fishing selectivity is determined by the level of voluntary escaping behavior in accordance with decision-making based on the relationship between fish size and mesh size. This study examined movement during the swimming behavior of black porgy in a trawl's towing cod-end and analyzed the movement components such as swimming speed, angular velocity of turning, and distance to the net over time. Most of the observed fish exhibited an optomotor response, maintaining position and swimming speed without changing direction. Others exhibited erratic or 'panic' behavior with sudden changes in swimming speed and direction. The latter behavior involved very irregular and aperiodic variations in swimming speed and angular velocity, termed 'chaotic behavior.' Thus, the results of this study can be applied to a chaotic behavior model as a time series of swimming movements in the towing cod-end for the fishing selectivity.

Robustness of Data Mining Tools under Varting Levels of Noise:Case Study in Predicting a Chaotic Process

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • 한국경영과학회지
    • /
    • 제23권1호
    • /
    • pp.109-141
    • /
    • 1998
  • Many processes in the industrial realm exhibit sstochastic and nonlinear behavior. Consequently, an intelligent system must be able to nonlinear production processes as well as probabilistic phenomena. In order for a knowledge based system to control a manufacturing processes as well as probabilistic phenomena. In order for a knowledge based system to control manufacturing process, an important capability is that of prediction : forecasting the future trajectory of a process as well as the consequences of the control action. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes, includinb chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process in the presence of various patterns of noise.

  • PDF

Design of Optimal Sampled-Data Controller for Continuous-Time Chatoic Systems

  • Park, Kwang-Sung;Park, Jin-Bae;Park, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.38.5-38
    • /
    • 2001
  • In this paper, we propose new digital optimal control approach for controlling continuous-time nonlinear chaotic systems, which show very complex behavior and cannot be easily controlled by conventional control methods. Most real systems are represented as continuous-time system, whereas some control methods should be implemented under the condition of computer-based platforms, which are discrete-time systems. To achieve the control objective for chaotic systems successfully, the sampled-data controller, which considers the inter-sample behavior of the continuous-time systems effectively, should be needed. The proposed optimal controller is designed based on the linearized estimation model of chaotic systems. By the computer simulation, we show the control ...

  • PDF

Fractional Duffing 방정식에서의 카오스 거동 해석 (Analysis of Chaotic Behavior in Fractional Duffing Equation)

  • 배영철
    • 한국전자통신학회논문지
    • /
    • 제10권12호
    • /
    • pp.1389-1394
    • /
    • 2015
  • 최근에 fractional calculus의 개념을 적용하여 fractional 미분 방정식으로 표현되는 기법이 제어공학, 수학, 물리학 등에 적용하고자 하는 노력이 나타나고 있다. 본 논문에서는 Duffing 방정식으로 표현되는 동적 방정식을 정수 차수가 아닌 fractional 차수로 표현하고 이 fractional 실수 차수에서 차수의 크기에 따라 카오스 거동이 존재함을 실수 차수의 값을 변화시켜가면서 시계열 데이터와 위상공간으로 확인하고자 한다.

Computations of the Lyapunov exponents from time series

  • Kim, Dong-Seok;Park, Eun-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권3호
    • /
    • pp.595-604
    • /
    • 2012
  • In this article, we consider chaotic behavior happened in nonsmooth dynamical systems. To quantify such a behavior, a computation of Lyapunov exponents for chaotic orbits of a given nonsmooth dynamical system is focused. The Lyapunov exponent is a very important concept in chaotic theory, because this quantity measures the sensitive dependence on initial conditions in dynamical systems. Therefore, Lyapunov exponents can decide whether an orbit is chaos or not. To measure the sensitive dependence on initial conditions for nonsmooth dynamical systems, the calculation of Lyapunov exponent plays a key role, but in a theoretical point of view or based on the definition of Lyapunov exponents, Lyapunov exponents of nonsmooth orbit could not be calculated easily, because the Jacobian derivative at some point in the orbit may not exists. We use an algorithmic calculation method for computing Lyapunov exponents using time series for a two dimensional piecewise smooth dynamic system.

Modeling the Selectivity of the Cod-end of a Trawl Using Chaotic Fish Behavior and Neural Networks

  • Kim, Yong-Hae;Wardle, Clement S.
    • Fisheries and Aquatic Sciences
    • /
    • 제11권1호
    • /
    • pp.61-69
    • /
    • 2008
  • Using empirical data of fish performance and physiological limits as well as physical stimuli and environmental data, a cod-end selectivity model based on a chaotic behavior model using the psycho-hydraulic wheel and neural-network approach was established to predict fish escape or herding responses in trawl and cod-end designs. Fish responses in the cod-end were categorized as escape or herding reactions based on their relative positions and reactions to the net wall. Fish movements were regulated by three factors: escape time, a visual looming effect, and an index of body girth-mesh size. The model was applied to haddock in a North Sea bottom trawl including frequencies of movement components, swimming speed, angular velocity, distance to net wall, and the caught-fish ratio; simulation results were similar to field observations. The ratio of retained fish in the cod-end was limited to 37-95% by optomotor coefficient values of 0.3-1.0 and to 13-67% by looming coefficient values of 0.1-1.0. The selectivity curves generated by this model were sensitive to changes in mesh size, towing speed, mesh type, and mesh shape.