• Title/Summary/Keyword: channel-selection filter

Search Result 24, Processing Time 0.02 seconds

Intelligent IIR Filter based Multiple-Channel ANC Systems (지능형 IIR 필터 기반 다중 채널 ANC 시스템)

  • Cho, Hyun-Cheol;Yeo, Dae-Yeon;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1220-1225
    • /
    • 2010
  • This paper proposes a novel active noise control (ANC) approach that uses an IIR filter and neural network techniques to effectively reduce interior noise. We construct a multiple-channel IIR filter module which is a linearly augmented framework with a generic IIR model to generate a primary control signal. A three-layer perceptron neural network is employed for establishing a secondary-path model to represent air channels among noise fields. Since the IIR module and neural network are connected in series, the output of an IIR filter is transferred forward to the neural model to generate a final ANC signal. A gradient descent optimization based learning algorithm is analytically derived for the optimal selection of the ANC parameter vectors. Moreover, re-estimation of partial parameter vectors in the ANC system is proposed for online learning. Lastly, we present the results of a numerical study to test our ANC methodology with realistic interior noise measurement obtained from Korean railway trains.

Linear cascode current-mode integrator (선형 캐스코드 전류모드 적분기)

  • Kim, Byoung-Wook;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1477-1483
    • /
    • 2013
  • This paper proposes a low-voltage current-mode integrator for a continuous-time current-mode baseband channel selection filter. The low-voltage current-mode linear cascode integrator is introduced to offer advantages of high current gain and improved unity-gain frequency. The proposed current-mode integrator has fully differential input and output structure consisting of CMOS complementary circuit. Additional cascode transistors which are operated in linear region are inserted for bias to achieve the low-voltage feature. Frequency range is also controllable by selecting proper bias voltage. From simulation results, it can be noticed that the implemented integrator achieves design specification such as low-voltage operation, current gain, and unity gain frequency.

Design of Fuzzy Logic Adaptive Filters for Active Mufflers (능동 머플러를 위한 퍼지논리 적응필터의 설계)

  • Ahn, Dong-Jun;Park, Ki-Hong;Kim, Sun-Hee;Nam, Hyun-Do
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.84-90
    • /
    • 2011
  • In active noise control filter, LMS algorithms which used for control filter, assure the convergence property, and computational burden of these algorithms are proportionate to the filter taps. The convergence speed of LMS algorithms is mainly determined by value of the convergence coefficient, so optimal selection of the value of convergence coefficient is very important. In this paper, We proposed novel adaptive fuzzy logic LMS algorithms with FIR filter structure which has better convergence speed and less computational burden than conventional LMS algorithms, for single channel active noise control with ill conditioned signal case. Computer simulations were performed to show the effectiveness of a proposed algorithms.

On the Selection of Burst Preamble Length for the Symbol Timing Estimate in the AWGN Channel

  • Lee, Seung-Hwan;Kim, Nam-il;Kim, Eung-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2059-2062
    • /
    • 2002
  • For detection of digitally modulated signals, the receiver must be provide with accurate carrier phase and symbol timing estimates. So far, tots of algorithms have been suggested for those purposes. In general, a interpolation filter with TED(Timing Error Detection) like Gardner algorithm is popularly used for symbol timing estimate of digital communication receiver. Apart from the performance point of view, a multiplicative operation of any interpolation filter limits the symbol rate of the system. Hence, we suggest a new symbol timing estimate algorithm for high speed burst-mode fixed wireless communication system and analyze its performance in the AWGN channel.

  • PDF

A CMOS Analog Front End for a WPAN Zero-IF Receiver

  • Moon, Yeon-Kug;Seo, Hae-Moon;Park, Yong-Kuk;Won, Kwang-Ho;Lim, Seung-Ok;Kang, Jeong-Hoon;Park, Young-Choong;Yoon, Myung-Hyun;Yoo, June-Jae;Kim, Seong-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.769-772
    • /
    • 2005
  • This paper describes a low-voltage and low-power channel selection analog front end with continuous-time low pass filters and highly linear programmable-gain amplifier(PGA). The filters were realized as balanced Gm-C biquadratic filters to achieve a low current consumption. High linearity and a constant wide bandwidth are achieved by using a new transconductance(Gm) cell. The PGA has a voltage gain varying from 0 to 65dB, while maintaining a constant bandwidth. A filter tuning circuit that requires an accurate time base but no external components is presented. With a 1-Vrms differential input and output, the filter achieves -85dB THD and a 78dB signal-to-noise ratio. Both the filter and PGA were implemented in a 0.18um 1P6M n-well CMOS process. They consume 3.2mW from a 1.8V power supply and occupy an area of $0.19mm^2$.

  • PDF

Sparse Adaptive Equalizer for ATSC DTV in Fast Fading Channels (고속페이딩 채널 극복을 위한 ATSC DTV용 스파스 적응 등화기)

  • Heo No-Ik;Oh Hae-Sock;Han Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.4-13
    • /
    • 2005
  • An equalization algorithm is proposed to guarantee a stable performance in fast fading channels for digital television (DTV) systems from the advanced television system committee (ATSC) standard. In channels with high Doppler shifts, the conventional equalization algorithm shows severe performance degradation. Although the conventional equalizer compensates poor channel conditions to some degree, long filter taps required to overcome long delay profiles are not suitable for fast fading channels. The Proposed sparse equalization algorithm is robust to the multipaths with long delay Profiles as well as fast fading by utilizing channel estimation and equalizer initialization. It can compensate fast fading channels with high Doppler shifts using a filter tap selection technique as well as variable step-sizes. Under the ATSC test channels, the proposed algorithm is analyzed and compared with the conventional equalizer. Although the proposed algorithm uses small number of filter taps compared to the conventional equalizer, it is stable and has the advantages of fast convergence and channel tracking.

Fuzzy Threshold Inference of a Nonlinear Filter for Color Sketch Feature Extraction (컬러 스케치특징 추출을 위한 비선형 필터의 퍼지임계치 추론)

  • Cho Sung-Mok;Cho Ok-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.398-403
    • /
    • 2006
  • In this paper, we describe a fuzzy threshold selection technique for feature extraction in digital color images. this is achieved by the formulation a fuzzy inference system that evaluates threshold for feature configurations. The system uses two fuzzy measures. They capture desirable characteristics of features such as dependency of local intensity and continuity in an image. We give a graphical description of a nonlinear sketch feature extraction filter and design the fuzzy inference system in terms of the characteristics of the feature. Through the design, we provide selection method on the choice of a threshold to achieve certain characteristics of the extracted features. Experimental results show the usefulness of our fuzzy threshold inference approach which is able to extract features without human intervention.

  • PDF

Scheduling Methods for Multi-User Optical Wireless Asymmetrically-Clipped OFDM

  • Wilson, Sarah Kate;Holliday, Joanne
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.655-663
    • /
    • 2011
  • Diffuse optical wireless (DOW) systems have the advantage that they do not require point-to-point siting so one transmitter can communicate with several receivers. In this paper, we investigate multiple access scheduling methods for downlink orthogonal frequency division multiplexing (OFDM) in diffuse optical wireless networks. Unlike the radio frequency (RF) channel, the DOW channel has low-pass filter characteristics and so requires different scheduling methods than those developed for the RF channel. Multi-user diversity orthogonal frequency division multiple access (OFDMA) systems nominate a cluster of subcarriers with the largest signal-to-noise-ratio for transmission. However, in a DOW channel, most users would choose the lowest frequency clusters of subcarriers. To remedy this problem, we make two proposals. The first is to use a variable cluster size across the subcarriers; the lower frequency clusters will have fewer subcarriers while the higher frequency clusters will have more subcarriers. This will equalize the capacity of the clusters. The second proposal is to randomize a user's cluster selection from a group of clusters satisfying a minimum threshold. Through simulation it is shown that combining these strategies can increase the throughput while ensuring a fair distribution of the available spectrum.

Optimum Selection of Equalizer Taps Losing Noise Power Estimation (잡음 전력 추정을 이용한 등화기 탭의 최적 선택 방법)

  • 성원진;신동준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.1971-1977
    • /
    • 2001
  • Multipath Rayleigh fading channels for mobile radio transmission can be represented by the linear filter model, and depending on the delay path characteristics, only a selected number of taps may have significance in the receiver structure design. By using tap-selective equalization, reduction in both processing complexity and power consumption can be obtained. In this paper, we present an optimal tap selection method for a given channel model, and demonstrate the performance improvement over an existing method. We show the method performs the CFAR (Constant False Alarm Rate) detection when the noise power information is available, and derive exact expressions of the error probability for the case of noise power estimation. Using the derived formulas and simulation results, it is demonstrated that the error probability quickly approaches to the optimal performance as the number samples used for the noise power estimation increases.

  • PDF

The Broadband Auto Frequency Channel Selection of the Digital TV Tuner using Frequency Mapping Function (주파수 매핑 함수를 이용한 광대역 주파수 자동 채널 선택용 디지털 TV 튜너)

  • 정영준;김재영;최재익;박재홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.613-623
    • /
    • 2000
  • Digital TV tuner for 8-VSB modulation was developed with satisfying the requirements of ATSC. The double frequency conversion and the active tracking filter in the front-end were used to reduce interference of the adjacent channels and multi-channels, which suppress If beat and image band. However, it was impossible to get frequency mapping between tracking filter and first VCO(Voltage Controlled Oscillator) in the double conversion digital TV tuner differing from conventional NTSC tuner. This paper, therefore, suggests the available structure and a new method for automatic frequency selection by obtaining the mapping of frequency characteristic over tracking voltage and the combined hardware which compose of Micro-controller, EEPROM, D/A(Digital-to-Analog Converter), OP amp and switch driver to solve above problems.

  • PDF