• Title/Summary/Keyword: channel radius

Search Result 152, Processing Time 0.032 seconds

Design of Accounting and Security Sessions for IEEE 802.11 Network (무선랜 정보보호를 위한 accounting 및 보안 세션의 설계)

  • 양대헌;오경희;강유성;함영환;정병호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.6
    • /
    • pp.85-96
    • /
    • 2003
  • Wireless LAM in itself is vulnerable to eavesdropping and modification attack, and thus, IEEE 802.11i and IEEE 802. 1x/1aa have been defined to secure the wireless channel. These protocols accompanied by RADIUS and EAP-TLS provide users of wireless LAM with integrity and confidentiality services, and also they perform authentication and access control of wireless ports. In this paper, we suggest a method to implement accounting session using authentication session of IEEE 802. 1x and accounting state machine is designed with the accounting session. Also, we propose a key exchange mechanism to establish secure channel between stations and an access point. The mechanism is designed to be inter-operable with IEEE 802. 1aa.

Characteristics of Sediment and Flow with Channel Patterns in Alluvial Rivers (충적하천(沖積河川)의 수로양상(水路樣相)에 따른 유사(流砂) 및 흐름특성(特性))

  • Lee, Jong Seok;Lee, Dae Cheol;Pai, Dong Man;Cha, Young Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1177-1189
    • /
    • 1994
  • This paper aims to develop the numerical model for prediction of the channel migration by analyzing of sediment and flow characteristics with patterns of channel in alluvial rivers. Flow in rivers constitutes to be the meandering or the braided form and rarely straight channel through morphologically stable patterns with mutual actions between the flowing water and bed materials. In order to develop the model for simulation of the channel migration, the channels are divided into two types with positive or negative sign by the direction of curvature radius of the centerline channel ($r_c$). That is, the single bend-channel consists of only one curvature of positive or negative sign and the multi-bend channel consists of two more curvatures of positive or negative sign, respectively. The model analyzes the sediment and flow characteristics under the influence of superelevation, spiral motion, irregularity in bed topography and depth-averaged velocity of channels. For reliability of this model, the single bend-channel and the multi bend channel are compared with experiment data in other models and the measured field data in the Keum-River, respectively. As a result, the both com parisians turn out to be excellent.

  • PDF

Analysis of a Photonic Crystal Fiber Sensor with Reuleaux Triangle

  • Bing, Pibin;Huang, Shichao;Guo, Xinyue;Zhang, Hongtao;Tan, Lian;Li, Zhongyang;Yao, Jianquan
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.199-203
    • /
    • 2019
  • The characteristics of a photonic crystal fiber sensor with reuleaux triangle are studied by using the finite element method. The wavelength sensitivity of the designed optical fiber sensor is related to the arc radius of the reuleaux triangle. Whether the core area is solid or liquid as well as the refractive index of the liquid core contributes to wavelength sensitivity. The simulation results show that larger arc radius leads to higher sensitivity. The sensitivity can be improved by introducing a liquid core, and higher wavelength sensitivity can be achieved with a lower refractive index liquid core. In addition, the specific channel plated with gold film is polished and then analyte is deposited on the film surface, in which case the position of the resonance peak is the same as that of the complete photonic crystal fiber with three analyte channels being filled with analyte. This means that filling process becomes convenient with equivalent performance of designed sensor. The maximum wavelength sensitivity of the sensor is 10200 nm/RIU and the resolution is $9.8{\times}10^{-6}RIU$.

Possible power increase in a natural circulation Soluble-Boron-Free Small Modular Reactor using the Truly Optimized PWR lattice

  • Steven Wijaya;Xuan Ha Nguyen;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.330-338
    • /
    • 2023
  • In this study, impacts of an enhanced-moderation Fuel Assembly (FA) named Truly Optimized PWR (TOP) lattice, which is modified based on the standard 17 × 17 PWR FA, are investigated in a natural circulation Soluble-Boron-Free (SBF) Small Modular Reactor (SMR). Two different TOP lattice designs are considered for the analysis; one is with 1.26 cm pin pitch and 0.38 cm fuel pellet radius, and the other is with 1.40 cm pin pitch and 0.41 cm fuel pellet radius. The NuScale core design is utilized as the base model and assumed to be successfully converted to an SBF core. The analysis is performed following the primary coolant circulation loop, and the reactor is modelled as a single channel for thermal-hydraulic analyses. It is assumed that the ratio of the core pressure drop to the total system pressure drop is around 0.3. The results showed that the reactor power could be increased by 2.5% and 9.8% utilizing 1.26/0.38 cm and 1.40/0.41 cm TOP designs, respectively, under the identical coolant inlet and outlet temperatures as the constraints.

Cell Radius & Guard Band Requirements by Mutual Interference Investigation between Satellite Digital Systems using Gap-filler (Gap-filler를 이용하는 위성 DMB 시스템 간의 상호간섭분석에 의한 보호대역 및 적정 셀 반경 설정)

  • Cha Insuk;Park SungHo;Chang KyungHi;You Heung-Ryeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.499-509
    • /
    • 2005
  • The capacity of Satellite DMB(Digital Multimedia Broadcasting) system is limited mainly by the interference. So, to achieve the expected performance of Satellite DMB system and to minimize the interference from other Satellite DMB system, ACI(Adjacent Channel Interference) should be considered carefully. Satellite DMB system uses the Gap-filler for effective transmission in terrestrial environment, and the Gap-filler can use direct amplification or frequency conversion to satisfy the specific requirements. Therefore, amplified signal causes several effects on interference between System A(Eureka 147 DAB) and System E(ISDB : Integrated services Digital Broadcasting). In this paper, by using the outcome of system-level simulation considering the results of link-level simulation, we analyze the interferences between System A and System E under practical situation based on the exact parameters of ITU-R BO. 1130-4. We also propose the appropriate level of guard band and Cell Radius to optimize system capacity by adapting the spectrum mask given in the spec. and utilizing the interference analysis between System A and System E.

A study on the device structure optimization of nano-scale MuGFETs (나노 스케일 MuGFET의 소자 구조 최적화에 관한 연구)

  • Lee Chi-Woo;Yun Serena;Yu Chong-Gun;Park Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.23-30
    • /
    • 2006
  • This paper describes the short-channel effect(SCE), corner effect of nano-scale MuGFETs(Multiple-Gate FETs) by three-dimensional simulation. We can extract the equivalent gate number of MuGFETs(Double-gate=2, Tri-gate=3, Pi-gate=3.14, Omega-gate=3.4, GAA=4) by threshold voltage model. Using the extracted gate number(n) we can calculate the natural length for each gate devices. We established a scaling theory for MuGFETs, which gives a optimization to avoid short channel effects for the device structure(silicon thickness, gate oxide thickness). It is observed that the comer effects decrease with the reduction of doping concentration and gate oxide thickness when the radius of curvature is larger than 17 % of the channel width.

Design of Stable Evaporative Micro-channel Systems Using Expanding Area (확장 면적을 이용한 안정된 증발 마이크로채널 시스템의 설계)

  • Lee, Hee-Joon;Yao, Shi-Chune
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.831-838
    • /
    • 2011
  • A growing bubble can be squeezed for water, and it will then encounter flow instability, which reverses toward upstream in straight micro-channels. To reduce the flow instability, a micro-channel that expands at the downstream end has been found to be effective. In the expanding area, a growing bubble will tend to move downstream because the net surface tension force of a vapor-liquid interface is inversely proportional to the local radius of curvature. We propose a static flow instability model and validate it experimentally. Moreover, we apply the local-instability parameter concept to the real design of a stable evaporative micro-channel with an expanding area. Based on the localinstability model, we establish a static design for stable expanding evaporative micro-channels.

Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers (다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.

Synthesis and Characterization of Layer-Patterned Graphene on Ni/Cu Substrate

  • Jung, Daesung;Song, Wooseok;Lee, Seung Youb;Kim, Yooseok;Cha, Myoung-Jun;Cho, Jumi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.618-618
    • /
    • 2013
  • Graphene is only one atom thick planar sheet of sp2-bonded carbon atoms arranged in a honeycomb crystal lattice, which has flexible and transparent characteristics with extremely high mobility. These noteworthy properties of graphene have given various applicable opportunities as electrode and/or channel for various flexible devices via suitable physical and chemical modifications. In this work, for the development of all-graphene devices, we performed to synthesize alternately patterned structure of mono- and multi-layer graphene by using the patterned Ni film on Cu foil, having much different carbon solid solubilities. Depending on the process temperature, Ni film thickness, introducing occasion of methane and gas ratio of CH4/H2, the thickness and width of the multi-layer graphene were considerably changed, while the formation of monolayer graphene on just Cu foil was not seriously influenced. Based on the alternately patterned structure of mono- and multi-layer graphene as a channel and electrode, respectively, the flexible TFT (thin film transistor) on SiO2/Si substrate was fabricated by simple transfer and O2 plasma etching process, and the I-V characteristics were measured. As comparing the change of resistance for bending radius and the stability for a various number of repeated bending, we could confirm that multi-layer graphene electrode is better than Au/Ti electrode for flexible applications.

  • PDF

An Satellite Communication Wireless Package System Using Analysis of Channel Interference between ISM band Systems (ISM 대역 시스템간 채널 간섭 분석을 통한 위성 통신 무선 패키지시스템 적용)

  • Ko, Hojeong;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.78-83
    • /
    • 2015
  • In this paper, when WLAN repeater of satellite communication package system as a novel wireless disaster communication network connected to LTE D2D mobile terminal, we analyzed radio channel interference from WLAN and WPAN system of adjacent same ISM band using Monte-Carlo method. In this study, WLAN cell radius was determined using Extended Hata Model considering practical environment, and simulated physical protection distance and density in the dense-mode to minimize interference from WLAN, Bluetooth, and ZigBee. Simulation results, WLAN repeater can be operated with 15 WLAN interferer over 130m distance, 23 Bluetooth interferer over 100m distance, and with 62 ZigBee interferer over 83m distance.