• Title/Summary/Keyword: channel properties

Search Result 959, Processing Time 0.027 seconds

Effect of Nafion Chain Length on Proton Transport as a Binder Material (수소이온 전달 특성에 미치는 바인더로 활용 가능한 나피온의 주쇄 길이의 영향)

  • Kang, Hoseong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • The purpose of this study was to compare the water channel morphology and the proton conductivity by changing the number of repeating units of the polymer backbone of PEMs, and to present a criterion for selecting an appropriate polymer model for MD simulation. In the model with the shortest polymer main chain, the movement of the main chain and the sulfonic acid group was observed to be large, but no change in the water channel morphology was found. In addition, due to the nature of the proton transport ability that is most affected by the water channel morphology, the proton conductivity did not show a significant correlation with the length of the polymer backbone. These results provide important information, particularly for the preparation of ionomers for binders. In general, a low molecular weight polymer electrolyte material is used for a binder ionomer. Since the movement of the main chain/sulfonic acid group is improved, it can play a role of enclosing the catalyst layer well. However, there is no change in its proton conducting performance. In conclusion, the preparation of ionomers for binders will require molecular weight and structure design with a focus on physical properties rather than proton transfer performance.

The alterations of $Ca^{2+}$-activated $K^+$ channels in coronary artery during cardiac hypertrophy

  • Kim, Nari;Lee, Sang-Kyeong;Chung, Joon-Yong;Seog, Dae-Hyun;Kim, Euiyong;Jin Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.23-23
    • /
    • 2003
  • It has been suggested that the impairment of smooth muscle cell (SMC) function by alterations in the $Ca^{2+}$-activated $K^{+}$ ( $K_{Ca}$ ) channels accounts for the reduction in coronary reserve during left ventricular hypertrophy (LVH). However, this hypothesis has not been fully investigated. The main goal of this study was to assess whether the properties of $K_{Ca}$ channels in coronary SMCs were altered during LVH. New Zealand white rabbits (0.8-1.0 kg) and Sprague-Dawley rats (300-400 g) were randomly selected to receive either an injection of isoproterenol (300 $\mu\textrm{g}$/kg body weight) or an equal volume of 0.9% saline (1 mL/kg body weight). The animals developed LVH 10 days after injection. In patch-clamp experiments, the unitary current amplitude and open probability for the $K_{Ca}$ channels were significantly reduced in LVH patches compared with control patches. The concentration-response curve of the $K_{Ca}$ channel to [C $a^{2+}$]$_{i}$ was shifted to the right. Inhibition of the $K_{Ca}$ channels with TEA was more pronounced in LVH cells than in the control cells. The whole-cell currents of $K_{Ca}$ channels were reduced during LVH. Western blot analysis indicated no differences in $K_{Ca}$ channel expression between the control and LVH coronary SM membranes. In contraction experiments, the effect of a high $K^{+}$concentration on the resting tension of the LVH coronary artery was greater than on that of the control. The effect of TEA on the resting tension of the LVH coronary artery was reduced as compared with the effect on the control. Our findings imply a novel mechanism for reduced coronary reserve during LVH.ing LVH.

  • PDF

Background $K^+$ channel currents in WEHI-231 cells, immature B lymphocytes

  • Nam, Joo-Hyun;Woo, Ji-Eun;Kim, Tae-Jin;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.39-39
    • /
    • 2003
  • In our previous study, WEHI-231, an immature B cell line, showed intractable increase in [C $a^{2+}$]$_{c}$ after the B-cell receptor (BCR) ligation and treatment with 2-aminoethoxydiphenylborate (2-APB), which was never observed in Bal-17, a mature B cell line (Nam et al., 2003, FEBS Lett). In this study, a whole cell voltage clamp study revealed a specific expression of a novel type of $K^{+}$ current, namely voltage-independent background-type $K^{+}$ channels (IK-bg), in WEHI-231 cells. IK-bg was dramatically increase by the application of 2-APB (50 $\square$M), which induced severe hyperpolarization of WEHI-231 from -45 ㎷ to -90 ㎷, When dialyzed with $Mg^{2+}$ and ATP-free pipette solution, a spontaneous development of IK-bg and membrane hyperpolarization were observed. IK-bg was insensitive to classical $K^{+}$ channel blockers (TEA, glibenclamide, $Ba^{2+}$(1 mM)), whereas blocked by quinine and quinidine in a voltage-dependent manner ($IC_{50}$/=6~9 $\square$M at +60㎷). Phorbol myrstate, a PKC activator, decreased the amplitude of IK-bg. Extracellular acidification (pH 6.5) slightly inhibited IK-bg. Arachidonic acid, riluzole, or hyposmotic stress could not affect the IK-bg after the full development by the intracellular dialysis with Mg-ATP-free solution. In a cell-attached mode of single channel recording from WEHI231, we found two types of voltage-independent $K^{+}$ channels with unitary conductance of 300 pS and 120 pS, respectively. Both channels showed very short mean open times and their open probabilities were increase by the application of 2-APB. In Bal-17 cells, no such $K^{+}$ current was observed in 50 cells tested. In summary, WEHI-231 immature B cells express background $K^{+}$ channels. The pharmacological properties and the large unitary conductance suggest that novel types of two-pore domain $K^{+}$ channels (2-P-K channels) might be expressed in WEHI-231, which may provide an intriguing targets of signal transduction in the immature B lymphocytes.e B lymphocytes.

  • PDF

A New Algorithm for Extracting Fetal ECG from Multi-Channel ECG using Singular Value Decomposition in a Discrete Cosine Transform Domain (산모의 다채널 심전도 신호로부터 이산여현변환영역에서 특이값 분해를 이용한 태아 심전도 분리 알고리듬)

  • Song In-Ho;Lee Sang-Min;Kim In-Young;Lee Doo-Soo;Kim Sun I.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.589-598
    • /
    • 2004
  • We propose a new algorithm to extract the fetal electrocardiogram (FECG) from a multi-channel electrocardiogram (ECG) recorded at the chest and abdomen of a pregnant woman. To extract the FECG from the composite abdominal ECG, the classical time-domain method based on singular value decomposition (SVD) has been generally used. However, this method has some disadvantages, such as its high degree of computational complexity and the necessary assumption that vectors between the FECG and the maternal electrocardiogram (MECG) should be orthogonal. The proposed algorithm, which uses SVD in a discrete cosine transform (DCT) domain, compensates for these disadvantages. To perform SVD with lower computational complexity, DCT coefficients corresponding to high-frequency components were eliminated on the basis of the properties of the DCT coefficients and the frequency characteristics of the FECG. Moreover, to extract the pure FECG with little influence of the direction of the vectors between the FECG and MECG, three new channels were made out of the MECG suppressed in the composite abdominal ECG, and the new channels were appended to the original multi-channel ECG. The performance of the proposed algorithm and the classical time-domain method based on SVD were compared using simulated and real data. It was experimentally verified that the proposed algorithm can extract the pure FECG with reduced computational complexity.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

Study on the Morphologies and Electrical Properties in Polymer Blend Thin-Films Based on Two Poly(3-hexylthiophene) Conjugated Polymers with Different Regio-regularities (서로 다른 위치 규칙성을 가지는 두 개의 Poly(3-hexylthiophene) 공액 고분자를 기반으로 한 고분자 복합 박막의 구조와 전기적 특성에 대한 연구)

  • Ganghoon Jeong;Nann Aye Mya Mya Phu;Rae-Su Park;Jeong Woo Yun;Yeongun Ko;Mincheol Chang
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.349-354
    • /
    • 2023
  • Poly(3-hexylthiophene) (P3HT) is a conjugated polymer that is highly soluble in organic solvents and is readily available. However, its electrical properties as an active channel in electronic devices are not enough for practical applications, necessitating further improvement in the properties. In this study, we demonstrate that the blending of two P3HT polymers (i.e., regio-regular (RR) P3HT and regio-random (RRa) P3HT) with different regioregularities can significantly improve charge transport characteristics of the blend films. The morphological and electrical properties of the blend films were systematically investigated by varying the ratio between two P3HT polymers. Atomic force microscopy (AFM), X-ray diffraction (XRD), and UV-visible absorption spectroscopy (UV-vis) were employed to evaluate the morphological and optoelectronic properties of the blend films. The crystallinity of the blend films increased with increasing the content of RRa-P3HT to 20 wt% and gradually decreased as the content increased to 80%. Consistently, the highest charge carrier mobility was obtained from the blend films containing 20 wt% RRa-P3HT, which value was measured to be 0.029 cm2/V·s. The values gradually decreased to 0.0007 cm2/V·s with increasing the content of RRa-P3HT to 80 wt%.

Electrical/Optical Characterization of Zn-Sn-O Thin Films Deposited through RF Sputtering

  • Park, Chan-Rok;Yeop, Moon-Su;Lee, Bo-Ram;Kim, Ji-Soo;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.360-360
    • /
    • 2012
  • Zn-Sn-O (Zinc-Tin-Oxide; ZTO) thin films have been gaining extensive academic and industrial attentions owing to a semiconducting channel materials applicable to large-sized flat-panel displays. Due to the constituent oxides i.e., ZnO and SnO2, the resultant Zn-Sn-O thin films possess artificially controllable bandgaps and transmittances especially effective in the visible regime. The current approach employed RF sputtering in depositing the Zn-Sn-O thin films onto glass substrates at ambient conditions. This work places its main emphases on the electrical/optical features which are closely related to the combinations of processing variables. The electrical characterizations are performed using dc-based current-voltage characteristics and ac-based impedance spectroscopy. The optical constants, i.e., refractive index and extinction coefficient, are calculated through spectroscopic ellipsometry along with the estimation of bandgaps. The charge transport of the deposited ZTO thin films is based on electrons characteristic of n-type conduction. In addition to the basic electrical/optical information, the delicate manipulation of n-type conduction is indispensible in diversifying the industrial applications of the ZTO thin films as active devices in information and energy products. Ultimately, the electrical properties are correlated to the processing variables along with the underlying mechanism which largely determines the electrical and optical properties.

  • PDF

PROPERTIES OF OPEN CLUSTERS CONTAINING BLUE STRAGGLERS

  • Lee, Hyun-Uk;Chang, Heon-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.3
    • /
    • pp.51-59
    • /
    • 2017
  • The presence of blue stragglers pose challenges to standard stellar evolution theory, in the sense that explaining their presence demands a complex interplay between stellar evolution and cluster dynamics. In the meantime, mass transfer in binary systems and stellar collisions are widely studied as a blue straggler formation channel. We explore properties of the Galactic open clusters where blue stragglers are found, in attempting to estimate the relative importance of these two favored processes, by comparing them with those resulting from open clusters in which blue stragglers are absent as of now. Unlike previous studies which require a sophisticated process in understanding the implication of the results, this approach is straightforward and has resulted in a supplementary supporting evidence for the current view on the blue straggler formation mechanism. Our main findings are as follows: (1) Open clusters in which blue stragglers are present have a broader distribution with respect to the Z-axis pointing towards the North Galactic Pole than those in which blue stragglers are absent. The probability that two distributions with respect to the Z-axis are drawn from the same distribution is 0.2%. (2) Average values of $log_10(t)$ of the clusters with blue stragglers and those without blue stragglers are $8.58{\pm}0.232$ and $7.52{\pm}0.285$, respectively. (3) The clusters with blue stragglers tend to be relatively redder than the others, and are distributed broader in colors. (4) The clusters with blue stragglers are likely brighter than those without blue stragglers. (5) Finally, blue stragglers seem to form in condensed clusters rather than simply dense clusters. Hence, we conclude that mass transfer in binaries seems to be a relatively important physical mechanism of the generation of blue stragglers in open clusters, provided they are sufficiently old.

Experimental and numerical studies on the behaviour of corroded cold-formed steel columns

  • Nie, Biao;Xu, Shanhua;Zhang, Haijiang;Zhang, Zongxing
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.611-625
    • /
    • 2020
  • Experimental investigation and finite element analysis of corroded cold-formed steel (CFS) columns are presented. 11 tensile coupon specimens and 6 stub columns of corroded CFS that had a channel section of C160x60x20 were subjected to monotonic tensile tests and axial compression tests, respectively. The degradation laws of the mechanical properties of the tensile coupon specimens and stub columns were analysed. An appropriate finite element model for the corroded CFS columns was proposed and the influence of local corrosion on the stability performance of the columns was studied by finite element analysis. Finally, the axial capacity of the experimental results was compared with the predictions obtained from the existing design specifications. The results indicated that with an increasing average thickness loss ratio, the ultimate strength, elastic modulus and yield strength decreased for the tensile coupon specimens. Local buckling deformation was not noticeable until the load reached about 90% of the ultimate load for the non-corroded columns, while local buckling deformation was observed when the load was only 40% of the ultimate load for the corroded columns. The maximum reduction of the ultimate load and critical buckling load was 57% and 81.7%, respectively, compared to those values for the non-corroded columns. The ultimate load of the columns with web thickness reduced by 2 mm was 53% lower than that of the non-corroded columns, which indicates that web corrosion most significantly affects the bearing capacity of the columns with localized corrosion. The results predicted using the design specifications of MOHURD were more accurate than those predicted using the design specifications of AISI.

Estimation of the property of small underwater target using the mono-static sonar (단상태 소나를 이용한 소형 수중표적 물성추정)

  • Bae, Ho Seuk;Kim, Wan-Jin;Lee, Da-Woon;Chung, Wookeen
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.293-299
    • /
    • 2017
  • Small unmanned platforms maneuvering underwater are the key naval future forces, utilized as the asymmetric power in war. As a method of detecting and identifying such platforms, we introduce a property estimation technique based on an iterative numerical analysis. The property estimation technique can estimate not only the position of a target but also its physical properties. Moreover, it will have a potential in detecting and classifying still target or multiple targets. In this study, we have conducted the property estimation of an small underwater target using the data acquired from the lake experiment. As a result, it shows that the properties of a small platform may be roughly estimated from the in site data even using one channel.