• Title/Summary/Keyword: channel network analysis

Search Result 609, Processing Time 0.026 seconds

A Dynamic Channel Allocation Algorithm Based on Time Constraints in Cellular Mobile Networks

  • Lee, Seong-Hoon;Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 2003
  • The new realtime applications like multimedia and realtime services in a wireless network will be dramatically increased. However, many realtime services of mobile hosts in a cell cannot be continued because of insufficiency of useful channels. Conventional channel assignment approaches didn't properly consider the problem to serve realtime applications in a cell. This paper proposes a new realtime channel assignment algorithm based on time constraint analysis of channel requests. The proposed algorithm dynamically borrows available channels from neighboring cells. It also supports a smooth handoff which continuously serves realtime applications of the mobile hosts.

Energy-efficient Power Allocation based on worst-case performance optimization under channel uncertainties

  • Song, Xin;Dong, Li;Huang, Xue;Qin, Lei;Han, Xiuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4595-4610
    • /
    • 2020
  • In the practical communication environment, the accurate channel state information (CSI) is difficult to obtain, which will cause the mismatch of resource and degrade the system performance. In this paper, to account for the channel uncertainties, a robust power allocation scheme for a downlink Non-orthogonal multiple access (NOMA) heterogeneous network (HetNet) is designed to maximize energy efficiency (EE), which can ensure the quality of service (QoS) of users. We conduct the robust optimization model based on worse-case method, in which the channel gains belong to certain ellipsoid sets. To solve the non-convex non-liner optimization, we transform the optimization problem via Dinkelbach method and sequential convex programming, and the power allocation of small cell users (SCUs) is achieved by Lagrange dual approach. Finally, we analysis the convergence performance of proposed scheme. The simulation results demonstrate that the proposed algorithm can improve total EE of SCUs, and has a fast convergence performance.

MIMO-aided Efficient Communication Resource Scheduling Scheme in VDES

  • Sung, Juhyoung;Cho, Sungyoon;Jeon, Wongi;Park, Kyungwon;Ahn, Sang Jung;Kwon, Kiwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2736-2750
    • /
    • 2022
  • As demands for the maritime communications increase, a variety of functions and information are required to exchange via elements of maritime systems, which leads communication traffic increases in maritime frequency bands, especially in VHF (Very High Frequency) band. Thus, effective resource management is crucial to the future maritime communication systems not only to the typical terrestrial communication systems. VHF data exchange system (VDES) enables to utilize more flexible configuration according to the communication condition. This paper focuses on the VDES communication system among VDES terminals such as shore stations, ship stations and aids to navigation (AtoN) to address efficient resource allocation. We propose a resource management method considering a MIMO (Multiple Input Multiple Output) technique in VDES, which has been widely used for modern terrestrial wireless networks but not for marine environments by scheduling the essential communication resources. We introduce the general channel model in marine environment and give two metrics, spectral and the energy efficiencies to examine our resource scheduling algorithm. Based on the simulation results and analysis, the proposed method provides a possibility to enhance spectral and energy efficiencies. Additionally, we present a trade-off relationship between spectral and energy efficiencies. Furthermore, we examine the resource efficiencies related to the imperfect channel estimation.

Performance Analysis of Opportunistic Spectrum Access Protocol for Multi-Channel Cognitive Radio Networks

  • Kim, Kyung Jae;Kwak, Kyung Sup;Choi, Bong Dae
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • Cognitive radio (CR) has emerged as one of effective methods to enhance the utilization of existing radio spectrum. Main principle of CR is that secondary users (SUs) are allowed to use the spectrum unused by primary users (PUs) without interfering PU's transmissions. In this paper, PUs operate on a slot-by-slot basis and SUs try to exploit the slots unused by PUs. We propose OSA protocols in the single channel and we propose an opportunistic spectrum access (OSA) protocols in the multi-channel cognitive radio networks with one control channel and several licensed channels where a slot is divided into contention phase and transmission phase. A slot is divided into reporting phase, contention phase and transmission phase. The reporting phase plays a role of finding idle channels unused by PUs and the contention phase plays a role of selecting a SU who will send packets in the data transmission phase. One SU is selected by carrier sense multiple access / collision avoidance (CSMA/CA) with request to send / clear to send (RTS/CTS) mechanism on control channel and the SU is allowed to occupy all remaining part of all idle channels during the current slot. For mathematical analysis, first we deal with the single-channel case and we model the proposed OSA media access control (MAC) protocol by three-dimensional discrete time Markov chain (DTMC) whose one-step transition probability matrix has a special structure so as to apply the censored Markov chain method to obtain the steady state distribution.We obtain the throughput and the distribution of access delay. Next we deal with the multi-channel case and obtain the throughput and the distribution of access delay by using results of single-channel case. In numerical results, our mathematical analysis is verified by simulations and we give numerical results on throughput and access delay of the proposed MAC protocol. Finally, we find the maximum allowable number of SUs satisfying the requirements on throughput and access delay.

Network, Channel, and Geographical Proximity of Knowledge Transfer: The Case of University-Industry Collaboration in South Korea

  • Kwon, Ki-Seok;Jang, Duckhee;Park, Han Woo
    • Asian Journal of Innovation and Policy
    • /
    • v.4 no.2
    • /
    • pp.242-262
    • /
    • 2015
  • The relationship between geographical proximity and academics' formal and informal knowledge-transfer activities in the network is analyzed with a mixed research method. With social network analysis as a basis, we have explored the networks between academics and firms in the 16 regions of South Korea. The result shows Seoul and Gyunggi are identified as central nodes, meaning that the academics in other regions tend to collaborate with firms in these regions. An econometric analysis is performed to confirm the localization of knowledge-transfer activities. The intensity of formal channels measured by the number of academic papers is negatively, but significantly associated with the geographical proximity. However, we have not found any significant relationship between the formality of the channels and geographical proximity. Possibly, the regional innovation systems in South Korea are neither big enough nor strong enough to show a localization effect.

Analysis of Temporal and Spatial Variations of Channel-Aquifer Interaction Using a Distributed Catchment Model: A Case Study for the Tarland Burn Catchment in the UK (분포형 유역 모델을 이용한 하천-지하수 상호작용의 시공간적 변동 해석: 영국 Tarland Burn 유역에 대한 사례 연구)

  • Koo, Bhon-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.253-257
    • /
    • 2007
  • Channel-aquifer interaction is one of the key hydrological processes that determine water flows in the stream/river channel. Field measurements of channel-aquifer interaction, however, is very difficult and costly, particularly when one intends to understand its variations across a catchment for a long period. Hydrological simulations using a catchment model are a relatively easier and cheaper alternative provided the model structure is appropriate for describing channel-aquifer interaction. In this study, a catchment model called CAMEL (Chemicals from Agricultural Management and Erosion Losses) is used for estimating channel-aquifer interaction over time and space. CAMEL is a distributed catchment model to simulate transformation and transport processes of sediment and pollutants as well as water flows at the catchment scale. In the model, a catchment is represented using a network of square columns each of which is comprised of various storages of water. CAMEL explicitly simulates both surface and subsurface processes including channel-aquifer interaction. This paper presents an application study results of CAMEL for the Tarland Burn Catchment, a small (catchment area $52\;km^2$) rural catchment in Scotland, UK, demonstrating some of the channel-aquifer interaction dynamics across the catchment during a 2-year period.

  • PDF

QoS Analysis of Wireless Sensor Network with ARQ Scheme (ARQ 방식을 적용한 무선 센서 네트워크의 QoS 해석)

  • Roh, Jae-Sung;Kim, Wan-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Severe energy constraints and the low power consumption require the significance of the energy efficient error control mechanisms in wireless sensor network (WSN). In this paper, an automatic repeat request (ARQ) methodology for the analysis of error control schemes in WSN is presented such that the effects of packet length, the modulation scheme and the interference effect of the wireless channel are investigated. Moreover, an analyis of ARQ error control is provided by considering two major architectures for wireless sensor network, i.e., Mica2 and MicaZ sensor nodes. And the throughput performance of WSN with asynchronous FSK signal and DSSS-OQPSK signal with selective repeat ARQ scheme are analyzed in multiple interference environment, and the probability of receiving a correct bit and packet from target node to sink node is evaluated as a function of the channel parameter, the number of wireless sensor node, and the spreading factor.

Performance Analysis of Key Exchange Protocols on ETSI Standard (ETSI 표준 키 교환 프로토콜의 성능 분석)

  • Lee, Young-Seok;Choi, Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.520-527
    • /
    • 2015
  • The key exchange protocols are very crucial tools to provide the secure communication in the broadband satellite access network. They should be required to satisfy various requirements such as security, key confirmation, and key freshness. In this paper, we present the security functions in ETSI(European Telecommunications Standards Institute), and analyze the specification of the security primitives and the key exchange protocols for the authenticated key agreement between RCST(Return Channel Satellite Terminal) and NCC(Network Control Centre). ETSI key exchange protocols consists of Main Key Exchange, Quick Key Exchange, and Explicit Key Exchange. We analyse the pros and cons of key exchange protocols based on performance analysis and performance evaluation.

Overview of 3-D IC Design Technologies for Signal Integrity (SI) and Power Integrity (PI) of a TSV-Based 3D IC

  • Kim, Joohee;Kim, Joungho
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.3-14
    • /
    • 2013
  • In this paper, key design issues and considerations for Signal Integrity(SI) and Power Integrity(PI) of a TSV-based 3D IC are introduced. For the signal integrity and power integrity of a TSV-based 3-D IC channel, analytical modeling and analysis results of a TSV-based 3-D channel and power delivery network (PDN) are presented. In addition, various design techniques and solutions which are to improve the electrical performance of a 3-D IC are investigated.

Adaptive Complex Interpolator for Channel Estimation in Pilot-Aided OFDM System

  • Liu, Guanghui;Zeng, Liaoyuan;Li, Hongliang;Xu, Linfeng;Wang, Zhengning
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.496-503
    • /
    • 2013
  • In an orthogonal frequency division multiplexing system, conventional interpolation techniques cannot correctly balance performance and overhead when estimating dynamic long-delay channels in single frequency networks (SFNs). In this study, classical filter analysis and design methods are employed to derive a complex interpolator for maximizing the resistible echo delay in a channel estimator on the basis of the correlation between frequency domain interpolating and time domain windowing. The coefficient computation of the complex interpolator requires a key parameter, i.e., channel length, which is obtained in the frequency domain with a tentative estimation scheme having low implementation complexity. The proposed complex adaptive interpolator is verified in a simulated digital video broadcasting for terrestrial/handheld receiver. The simulation results indicate that the designed channel estimator can not only handle SFN echoes with more than $200{\mu}s$ delay but also achieve a bit-error rate performance close to the optimum minimum mean square error method, which significantly outperforms conventional channel estimation methods, while preserving a low implementation cost in a short-delay channel.