• Title/Summary/Keyword: channel interference

Search Result 1,849, Processing Time 0.028 seconds

Robust QFT(Quantitative Feedback Theory) Controller Design of Parallel Link (평행링크 매니퓰레이터의 강인한 QFT(Quantitative Feedback Theory)제어기 설계)

  • Kang, Min-Goo;Byun, Gi-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2249-2251
    • /
    • 2001
  • This paper proposes that it minimizes interference between link at high speed trajectory tracking of 2-degree parallel link manipulator and QFT(Quantitative Feedback Theory) controller which robust structure uncertainty and disturbance of plant. And using ICD(Individual Channel Design), it separates two channel from multivariable system, parallel link manipulator and designs robust controller with applying MISO QFT to each channel. Finally, we make sure of robustness and excellence of QFT controller through simulation and experiment.

  • PDF

Interference-Aware Multipath (IAM) Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

  • Mian Hammad Ullah;Choonhwa Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1314-1315
    • /
    • 2008
  • Recent research work has unearthed that multi-radio multi-channel wireless mesh networks offer considerable capacity gains over single-radio wireless mesh networks. In this paper, we present a new routing metric for multi-radio multi-channel wireless mesh networks. The goal of the metric is to choose multiple link/node disjoint paths between a source and destination node that, when used concomitantly, impart high end-to-end throughput. The proposed metric selects high fidelity paths that will produce elevated throughput with maximum fault tolerance.

Design of 2-D MA FIR Filters for Channel Estimation in OFDM Systems

  • Park, Ji-Woong;Lee, Seung-Woo;Lee, Yong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.234-237
    • /
    • 2003
  • The accuracy of channel estimation significantly affects the performance of coherent OFDM receiver. It is desirable to employ a good channel estimator while requiring low implementation complexity. In this paper, we propose a channel estimator that employs a simple two-dimensional (2-D) moving average (MA) filter as the channel estimation filter. The optimum tap size of the 2-D MA FIR filter is analytically designed in the time and frequency domain in association with the channel condition and pilot signal to interference power ratio. The analytic results can be applied to the design of adaptive channel estimator. Finally, the performance of the proposed channel estimator is verified by computer simulation.

  • PDF

New Channel Equalizers for Mixed Phase Channel (혼합위상 특성을 고려한 새로운 채널 등화기)

  • 안경승;조주필;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1445-1452
    • /
    • 2000
  • In general, the communication channel can be modeled as inter-symbol interference(ISI) and additive white gaussian noise channel. Viterbi algorithm is optimum detector for transmitted data at transmitter, but it needs large computational complexity. For the sake of this problem, adaptive equalizers are employed for channel equalization which is not attractive for mixed phase channel. In this paper, we propose the effective new channel equalizer for mixed phase channel and show the better performance than previous equalizers.

  • PDF

LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.384-391
    • /
    • 2003
  • Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.

A Novel Spectrum Allocation Strategy with Channel Bonding and Channel Reservation

  • Jin, Shunfu;Yao, Xinghua;Ma, Zhanyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4034-4053
    • /
    • 2015
  • In order to meet various requirements for transmission quality of both primary users (PUs) and secondary users (SUs) in cognitive radio networks, we introduce a channel bonding mechanism for PUs and a channel reservation mechanism for SUs, then we propose a novel spectrum allocation strategy. Taking into account the mistake detection and false alarm due to imperfect channel sensing, we establish a three-dimensional Markov chain to model the stochastic process of the proposed strategy. Using the method of matrix geometric solution, we derive the performance measures in terms of interference rate of PU packets, average delay and throughput of SU packets. Moreover, we investigate the influence of the number of the reserved (resp. licensed) channels on the system performance with numerical experiments. Finally, to optimize the proposed strategy socially, we provide a charging policy for SU packets.

A Proactive Dynamic Spectrum Access Method against both Erroneous Spectrum Sensing and Asynchronous Inter-Channel Spectrum Sensing

  • Gu, Junrong;Jang, Sung-Jeen;Kim, Jae-Moung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.361-378
    • /
    • 2012
  • Most of the current frequency hopping (FH) based dynamic spectrum access (DSA) methods concern a reactive channel access scheme with synchronous inter-channel spectrum sensing, i.e., FH is reactively triggered by the primary user (PU)'s return reported by spectrum sensing, and the PU channel to be switched to is assumed precisely just sensed or ready to be sensed, as if the inter-channel spectrum sensing moments are synchronous. However, the inter-channel spectrum sensing moments are more likely to be asynchronous, which risks PU suffering more interference. Moreover, the spectrum sensing is usually erroneous, which renders the problem more complex. To address this problem, we propose a proactive FH based DSA method against both erroneous spectrum sensing and asynchronous inter-channel spectrum sensing (moments). We term it as proactive DSA. The optimal FH sequence is obtained by dynamic programming. The complexity is also analyzed. Finally, the simulation results confirm the effectiveness of the proposed method.

Adaptive Channel Estimation Algorithm for DVB-T (DVB-시스템을 위한 적응형 채널 추정 알고리즘)

  • Kim, Seung-Hwan;Lee, Jin-Beom;Lee, Jin-Yong;Kim, Young-Lok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.676-684
    • /
    • 2008
  • In digital video broadcasting-terrestrial (DVB-T), which is the European digital terrestrial television standard, the orthogonal frequency division multiplexing (OFDM) has been adopted for signal transmission. The main reasons using OFDM are to increase the robustness against the frequency selective fading and impulse noise, and to use available bandwidth efficiently. However, channel variation within an OFDM symbol destroys orthogonality between subcarriers, resulting in inter-carrier interference (ICI), which increases an error floor in proportional to maximum Doppler spread. This paper provides an ICI analysis in both time and frequency domains while existing literatures analyze the ICI effects mainly in frequency domain and proposes the algorithms that estimate the channel impulse response and channel variation using least square (LS) algorithm which is the most simple channel estimation technique. And we propose adaptive channel estimation algorithm that estimates the velocity of terminals. The simulation results show that proposed algorithm has similar performance with about 1.5% computational complexity of noise and ICI reduction LS algorithm in low speed environments.

Power Allocation and Mode Selection in Unmanned Aerial Vehicle Relay Based Wireless Networks

  • Zeng, Qian;Huangfu, Wei;Liu, Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.711-732
    • /
    • 2019
  • Many unmanned aerial vehicle (UAV) applications have been employed for performing data collection in facilitating tasks such as surveillance and monitoring objectives in remote and dangerous environments. In light of the fact that most of the existing UAV relaying applications operate in conventional half-duplex (HD) mode, a full-duplex (FD) based UAV relay aided wireless network is investigated, in which the UAV relay helps forwarding information from the source (S) node to the destination (D). Since the activated UAV relays are always floating and flying in the air, its channel state information (CSI) as well as channel capacity is a time-variant parameter. Considering decode-and-forward (DF) relaying protocol in UAV relays, the cooperative relaying channel capacity is constrained by the relatively weaker one (i.e. in terms of signal-to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR)) between S-to-relay and relay-to-D links. The channel capacity can be optimized by adaptively optimizing the transmit power of S and/or UAV relay. Furthermore, a hybrid HD/FD mode is enabled in the proposed UAV relays for adaptively optimizing the channel utilization subject to the instantaneous CSI and/or remaining self-interference (SI) levels. Numerical results show that the channel capacity of the proposed UAV relay aided wireless networks can be maximized by adaptively responding to the influence of various real-time factors.

Anti-interference Methods using Vector-based GPS Receiver Mode

  • Viet, Hoan Nguyen;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.545-557
    • /
    • 2018
  • The Global Positioning System (GPS) has become popular and widely used in many fields from military to civilian applications. However, GPS signals are suffered from interference due to its weak signal over wireless channel. There are many types of interference, such as jamming, blocking multipath, and spoofing, which can mislead the operation of GPS receiver. In this paper, vector-based tracking loop model with integrity check is proposed to detect and mitigate the harmful effect of interference on GPS receiver operation. The suggested methods are implemented in the tracking loop of GPS receiver. As a first method, integrity check with carrier-to-noise ratio (C/No) monitoring technique is applied to detect the presence of interference and prevent contaminated channels out of tracking channels to calculate position. As a second method, a vector-based tracking loop using Extended Kalman Filter with adaptive noise covariance according to C/No monitoring results. The proposed methods have been implemented on simulated dataset. The results demonstrates that the suggested methods significantly mitigate interference of Additive White Gaussian Noise (AWGN) and improve position calculation by 44%.