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Abstract

The accuracy of channel estimation significantly
affects the performance of coherent OFDM receiver. It is
desirable to employ a good channel estimator while
requiring low implementation complexity. In this paper,
we propose a channel estimator that employs a simple
two-dimensional (2-D) moving average (MA) filter as
the channel estimation filter. The optimum tap size of the
2-D MA FIR filter is analytically designed in the time
and frequency domain in association with the channel
condition and pilot signal to interference power ratio.
The analytic results can be applied to the design of
adaptive channel estimator. Finally, the performance of
the proposed channel estimator is verified by computer
simulation.

I. Introduction

Orthogonal frequency division multiplexing (OFDM)
system usually employs coherent detection to improve
the detection performance. The performance of coherent
detection significantly depends upon the accuracy of
channel estimation (CE) .

There have been a number of studies on CE for
OFDM systems. Two-dimensional (2-D) Wiener filter is
considered as the optimum channel estimation filter
(CEF) in a linear minimum mean square error (MMSE)
sense [1]. However, it may not be practical because of
large implementation complexity. Moreover, it requires
the correlation matrix of the channel impulse response
(CIR) as well as the signal to interference power ratio
(SIR) of the received symbol. The use a single 2-D
Wiener filter can be replaced with the use of two 1-D
Wiener filters for each domain because it can reduce the
implementation complexity with a small performance
loss [1]. However, it is still too complex to employ two
1-D Wiener filters in practice.

Least square (LS) scheme can be considered as a
simple one [2]. The LS CE, however, may result in
significant performance degradation since it does not
consider the correlation of the CIR between the adjacent
symbols in the time and frequency domain. The use of
filtering or windowing method is proposed to mitigate
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this problem [2].

The Doppler spectrum of the channel is usually
spread to the maximum Doppler frequency of an
experiencing channel. Thus, a brick-wall type lowpass
filter with the cut-off frequency equal to the maximum
Doppler frequency of the channel can be used as the CEF
[3]. However, such a CEF may not be practical because it
is not implementable using a small number of filter taps.
Similarly, the estimation accuracy can be enhanced in the
frequency domain by neglecting the time-domain CIR
corresponding to the out-of cyclic prefix (CP) symbol
duration [2]. However, it still requires a large
implementation complexity since it requires additional
fast Fourier transform (FFT) and inverse FFT (IFFT)
process.

In this paper, we consider the use of a 2-D MA FIR
filter as the CEF, which can be implemented using only
addition operation while providing relatively good
receiver performance. There are a few results on the
effect of the tap size of the MA FIR CEF on the channel
estimation performance [4,5]. However, few results have
been reported on analytic design of the MA FIR CEF.
Analytic design of the optimum 1-D MA FIR CEF was
considered for the direct sequence code division multiple
access (DS-CDMA) systems [6], but it cannot directly be
applied to the design of optimum 2-D MA FIR CEF
because the optimum tap sizes in the time and frequency
domain are closely related to each other. We analytically
design the optimum 2-D MA FIR CEF by minimizing
the MSE of the CIR.

Following Introduction, Section I describes an
OFDM system, where pilot symbols are regularly
scattered in the time and frequency grid. The optimum 2-
D MA FIR CEF is analytically derived in Section II.
The performance of the proposed scheme is evaluated in
Section IV. Finally, conclusions are summarized in
Section V.

I1. System model

Consider an OFDM transmission system whose
baseband equivalent model is depicted in Fig. 1. In the
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(a) Transmitter

(b) Receiver

Fig. 1. OFDM transceiver with channel estimation

transmitter, K data symbols at the n-th symbol time,
{X[n,k]} , k=1,2,...,K-1, are converted into time domain

signals using the IFFT and then a CP is added. We
assume that the pilot symbol are regularly scattered in a
rectangular style, i.e., located apart by A and B symbols
in the time and frequency grids, respectively.

We assume a wireless channel whose impulse
response is represented as

L-1
hy(t,7) = 3 by ()S( 7)) (1)
1=0
where L is the number of multipaths, m denotes the
receive antenna index, &() is the Kronecker delta
function, 7, is the delay of the /-th path and #,,(1) is
the corresponding complex CIR at time ¢.
The CIR can be modeled as a complex zero-mean
additive white Gaussian noise (AWGN) process. Since

CE is performed at each receive antenna, we omit the
index m for ease of description. We assume that k() is

statistically independent for each path and has the same
normalized correlation function r,(at) for all /. Then,
r, (at) = E{h (t +at)h; (1)} = o7, (a1) )]

where o} is the average power of the /-th path.

Assuming Rayleigh fading channel, the time-domain
correlation function r,(at) can be represented as

Jo@2r f,at) , for the classic spectrum
r(af)=1{ sinQrf,ar) (3)
—=%—"  for the flat spectrum
2nfyr *

where f, is the maximum Doppler frequency of the
channel and J,(-) is the first kind, zero-th order Bessel
function. The frequency response of the channel at time t
can be represented as

H.S)= | ht,)exp(-j2n fr)de
~ @)
L-t
=) h()exp(-jln f1,).
i=0
Assuming the normalized average path power (i.e.,
L-1

Y o =1), the correlation function of the frequency
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response can be represented as
ry(at,af)=r(at)r;(af) - &)

where
1y(af)= 507 exp(- j2mafr) ©)
In an OFDM symbo! with the symbol time 7, and
subcarrier spacing af , the correlation function (5) can
be represented as
Ry [n, k1= R [n]R[K]

where R [n]=r(nT) and R [k]=r (kaf).

In the receiver, the CP is removed before the FFT
process. Assuming ideal synchronization at the receiver,
the signal of the k-th subcarrier at the n-th symbol time
can be represented by

Y{n, k= X[n,k)H[n,k]+ Z[n,k] (8)

where H[n,k] is the channel frequency response of the

Q)

k-th subcarrier at the n-th symbol time and Z[n,k] is
the background noise and interference and can be
approximated as zero mean AWGN with variance o;.
In vector notation, it can be rewritten as
Y(n]=X[nJH[n]+Z[n] ®
where
YIn)=[Y[n0] YIn1] - YinK-1I',  X[n]= diag(X[n,0],
X1}, X[n.K~1)), H[n)=[H[n0] Hn1] --- HnK-1].
and Z[n]={Z[n,0] Z{n,1] .- Z[n,K-1Y.

I11. Optimum 2-D MA FIR CEF

The pilot symbols are first estimated using the LS
method [2], i.e.,
H{n,k]=Y[nk)/ X[n,k)= H[n,k]+Z'[n,k].(10)
Assuming that |X[n,k]f=1 for all pilot symbols,
Z'[n,k] is also zero mean AWGN with variance o;.
When a 2-D MA FIR CEF has (2M,+1)- and
(M, +1) -taps in the time and frequency domain,

respectively, the CIR at the ' -th symbol time and & -
th subcarrier can be obtained by

Hln K] ! i S Hntmak+mB) (11)

@M, ADM, AD T,
where n-A4/2<n'<n+A4f2 and k-Bf2<k'<k+B[2.
Since there is negligible difference between the CIRs
corresponding to the pilot symbol and adjacent data
symbol, we consider the case of n'=n and k'=k for
simple description. Note that (11) needs only addition
operation except normalization process.

By changing the summation form into an integral
form, the MSE of the estimated CIR c¢an be
approximated by

&, my) =124, (7 )+ G (M) o )+ 5 (g 5 ) (12)
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where m, =T.(M, +0.5), m, =Af(M.+0.5) and
t s\ ! 7

1 m 1 me
Gulm)= L n A0 gy,(m)= ™ [, B
1 moem,
g,2(m)= -(Zm, )"2 J.—m, J._m, r, (At —1,)Mnde,

{7 1 BU - LM, (13)

1 my
95 (m/) = a;n‘f_)’z—j_m[

2mf
Since g(m,,m,) is a concave function of m, and

T,
qr.a(m:) =Zn"‘ s q/,s(mf) =

t

m, , the optimum tap size can uniquely be determined by
solving
oe(m,,m s )
om,

Setmom)l L g.(14)

my=my

=0 and

om,

Substituting the polynomial approximations of (3) and
cos(f) for 0<¢<2x/3 and neglecting the third-order

term, the optimum tap size can be approximated by
M, = (i, +0.5)/T,

|
|

15g,5(m, Yo
1673k, 5[ 84,5 (m) - 3q,,(m,)

s
]J , for the classic spetrum ( 15 )

T

225, ,(m,)o?
12872k, ,[ 84,5 (m,) - 3g,,(m,)]

, for the flat spetrum

My~ 15g,5(m)o § (16)
16(Af)* K, [8q, . (m,) - 3q,,(m,) ]
where
1
kr,l = ”2A2f;12’k1,2 = Z”4A4fd4
k= 27[2321'31,](/,2 = %7’[4341‘32 an

R IR <
= ZT:‘ O, 5% =ZTi o; .
i=0 i0

Note that the optimum tap size in the time domain is
affected by the tap size in the frequency domain and vice
versa. Since the optimum tap size satisfying (14) may not
be represented in a closed form, it can be obtained
iteratively as follows.

As illustrated in Fig. 2, the initial tap size is set to
A:l,,0=1t:1f_o =1. For A:I,,o =1, the optimum tap size

~

M,, in the frequency domain is set to 25 by (16).

s
Using M ;1 the optimum tap size AAJ,J in the time
domain is set to 7 by (15). In this manner, the values of
M ,, and M
converging to a globally optimum value. Since the MSE
is a concave function of M, and M, the optimum tap

i=2, 3, ..., are iteratively obtained,

i

size can always be found. The global optimum tap size

236

Fig. 2. Iterative procedure for finding the optimum
tap size of the 2-D MA FIR CEF

can usually be obtained within five iterations.

IV. Performance evaluation

To investigate the effect of channel estimation on the
receiver performance, the performance is evaluated in
terms of bit error rate (BER). The simulation condition is
summarized in Table 1. For performance comparison, we
also consider the performance of 2-D Wiener CE and 2-
D linear interpolation (LI) CE. The tap size of 2-D
Wiener CEF is set to 80 and 20 in the time and frequency

domain, respectively, since the use of additional taps
provides negligible performance improvement. We also

consider the use of a fixed 2-D MA FIR CEF whose tap
sizes are determined to be M, = 2 and M, = 1

considering the maximum sample delay of 64, f, .. of

1342.6 Hz and maximum SIR of 20 dB.

Fig. 3 and 4 depict BER performance with the
convolutional coding whose code block is composed of
the data bits in A OFDM symbols. Note that BER
performance with L=32 is better than that with L=2 due

Table 1. Simulation condition
Parameters Values
Total bandwidth 80 MHz
FFT/Guard interval 6.4 us/1.6 us
FFT size 512
Pilot redundancy 11.1 % (A=3, B=3)
Carrier frequency 5.8 GHz
Allowable maximum 250 km/h
Doppler frequency (1342.6 Hz)

Convolutional coding

Channel coding (Code rate=1/2, constraint

length=9)
Modulation QPSK, 64QAM
Rayleigh (classic)
Channel Exponential profile

(RMS delay = 5 symbols)
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to increased frequency diversity effect. The optimum 2-D
MA FIR CEF can provide BER performance similar to
the 2-D Wiener CEF in most of channel condition. It can
also be seen that the performance of the fixed MA FIR
CEF significantly degrades, particularly when the
number of multipaths and/or the maximum Doppler
frequency is small and high-order modulation is
employed.

V. Conclusions

In this paper, we consider the design of 2-D MA FIR
filters as the CEF for ease of implementation while
providing relatively good receiver performance. We have
proposed a simple procedure for the design of the
optimum tap sizes of the 2-D MA FIR CEF. It can be
seen that the optimum tap size depends on the channel
condition parameters including the maximum Doppler
frequency, power-delay profile and SIR. Simulation
results show that the use of optimum 2-D MA FIR CEF
is quite practical considering both the implementation
complexity and performance. The analytic results can
also be applied to the design of adaptive channel
estimators.
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(b) L=32
Fig. 3. BER performance when f,T; =0.00043.

(b) L=32
Fig. 4. BER performance when f,T;=0.0107.



