• Title/Summary/Keyword: channel configuration

Search Result 382, Processing Time 0.031 seconds

Performance Enhancement of IEEE 802.15.3 MAC for Simultaneously Operating Piconets

  • Peng, Xue;Peng, Gong;Kim, Duk-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.34-43
    • /
    • 2007
  • In the IEEE 802.15.3 Medium Access Control (MAC) protocol, Simultaneously Operating Piconets (SOPs) are linked by the parent/child (P/C) or parent/neighbor (P/N) configuration, which work on a Time Division Multiple Access (TDMA) basis. This provides interference mitigation but the overall throughput is limited because the SOPs share the channel time exclusively. The protocol is not efficient for SOPs if we focus on the combination of interference mitigation and high throughput maintenance. In this paper Public Channel Time Allocation (Public CTA) is proposed, which is able to greatly reduce the inter-piconet interference (IPI) and achieve greater throughput without much loss of link success probability (LSP) in the SOPs. The simulation results based on the SOPs of Direct Sequence Ultra Wideband (DS-UWB) system demonstrate that the proposed scheme effectively supports the coexistence of SOPs, and it can not only significantly improve the overall throughput of SOPs but also maintain high LSP.

Effect of Phorbol ester on $K^+$channel in an G292 osteoblast-like cell (G292 세포에서 $K^+$통로에 대한 phorbol ester의 효과)

  • Kim, Mi-Kyung;Park, Su-Byung
    • The korean journal of orthodontics
    • /
    • v.32 no.3 s.92
    • /
    • pp.227-234
    • /
    • 2002
  • In order to investigate the action mechanism of protein kinase C on $K^+$ channel in osteoblastic cell, effects of phorbol 12, 13-dibutyrate on human osteoblast-like cells (G292) were studied by patch clamp technique with cell-attacked configuration. 111 this experiment, 45pS ion channel was dominant in G292 cell line according to their approximate conductances in symmetrical 140mM KCl saline at holding potential of 60mV. In torrent-voltage relationship, reversal potential was 5.5mV at the condition of potassium enriched saline in the pipette and -27 mV at the condition of standard extracellular saline In the pipette. Phorbol 12, 13-dibutyrate 10nM increased the open probability of 45pS channel and staurosporine, an inhibitor of protein kinase C, suppressed this effect. Phorbol 12,13-dibutyrate moved the reversal potential of 45pS channel to more negative potential and increased the single channel current at the same membrame potential. In order to check the activation of protein kinase C in G292 cell by phorbol 12,13-dibutyrate, western blot of protein kinase C was performed. Phorbol 12,13-dibutyrate $0.1{\mu}M$ translocated protein kinase C from cellular compartment to membrane compartment of the cell. These findings suggest that phorbol 12,13-dibutyrate, one of phorbol esters, activate 45pS channel In G292 cell and affect cell membrane potential, that regulate cellular function.

Stereo-10.2Channel Blind Upmix Technique for the Enhanced 3D Sound (입체음향효과 향상을 위한 스테레오-10.2채널 블라인드 업믹스 기법)

  • Choi, Sun-Woong;Hyun, Dong-Il;Lee, Suk-Pil;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.340-351
    • /
    • 2012
  • In this paper, we proposed the stereo-10.2channel blind upmix algorithm for the enhanced 3D sound. Recently, consumers want to enjoy better sound and the use of a various of multichannel configuration has been steadily improved. Thus, upmix algorithms have been researched. However, conventional upmix algorithms have the problem that distorts the spatial information of original source. To solve this problem and enhance the spatial sound quality, we proposed front and rear channel gain adjustment and 10.2 channel upmix algorithm for each additional channel. The listening test results show that it maintains spatial information of stereo input and enhances 3D sound effects unlike other conventional upmix algorithms.

A 16-channel CMOS Inverter Transimpedance Amplifier Array for 3-D Image Processing of Unmanned Vehicles (무인차량용 3차원 영상처리를 위한 16-채널 CMOS 인버터 트랜스임피던스 증폭기 어레이)

  • Park, Sung Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1730-1736
    • /
    • 2015
  • This paper presents a 16-channel transimpedance amplifier (TIA) array implemented in a standard $0.18-{\mu}m$ CMOS technology for the applications of panoramic scan LADAR (PSL) systems. Since this array is the front-end circuits of the PSL systems to recover three dimensional image for unmanned vehicles, low-noise and high-gain characteristics are necessary. Thus, we propose a voltage-mode inverter TIA (I-TIA) array in this paper, of which measured results demonstrate that each channel of the array achieves $82-dB{\Omega}$ transimpedance gain, 565-MHz bandwidth for 0.5-pF photodiode capacitance, 6.7-pA/sqrt(Hz) noise current spectral density, and 33.8-mW power dissipation from a single 1.8-V supply. The measured eye-diagrams of the array confirm wide and clear eye-openings up to 1.3-Gb/s operations. Also, the optical pulse measurements estimate that the proposed 16-channel TIA array chip can detect signals within 20 meters away from the laser source. The whole chip occupies the area of $5.0{\times}1.1mm^2$ including I/O pads. For comparison, a current-mode 16-channel TIA array is also realized in the same $0.18-{\mu}m$ CMOS technology, which exploits regulated-cascode (RGC) input configuration. Measurements reveal that the I-TIA array achieves superior performance in optical pulse measurements.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

Secure Configuration Scheme for Internet of Things using NFC as OOB Channel (NFC를 OOB 채널로 활용한 사물인터넷 보안 설정 기술)

  • Kim, Jeongin;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • The PSK (Pre-shared Secret Key) based method is appropriate for the IoT environment consisting of lightweight devices since this method requires less computing time and energy than the method to configure the session key based on the public key algorithm. A fundamental prerequisite for the PSK based method is that PSK should have been configured between the communication entities safely in advance. However, in case of a small sensor or actuator, no input and output interface such as keyboard and monitor required for configuration exists, so it is more difficult to configure PSK for such lightweight devices safely in the IoT environment than the previous Internet devices. Especially, normal users lack expertise in security so they face difficulty in configuration. Therefore, the default value configured at the time of manufacturing at factories is used or the device installer configures PSK in most cases. In such case, it is a matter for consideration whether all installers and manufacturers can be trusted or not. In order to solve such problem, this paper proposes a secure bootstrapping scheme, which utilizes the NFC (Near Field Communication) as an OOB (Out-Of-Band) channel, for lightweight devices with limited resources.

HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS (주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진)

  • Jeong, Taekyeong;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

Design Philosophy of MIMO OFDM system for Underwater Communication (수중 통신 환경을 위한 MIMO-OFDM 시스템 설계)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hun;Kim, Sea-Moon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2011
  • In this paper, we first analyze the differences of underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) systems and conventional terrestrial OFDM system, and give a simple introduction of the backgrounds. By considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

Dynamic Channel Allocation in Closed-Access Small Cell Networks (폐쇄형 접속 방식의 소형셀 네트워크를 위한 동적 채널 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.50-61
    • /
    • 2014
  • Operating small cell with existing macro cell is of interest in wireless communication technology to enhance network capacity. Closed-access small cell allows the access of users registered in it and causes severe interference to nearby users connected to macrocell. We propose a dynamic channel allocation for small cells in the same building that first aim to minimize call-drop of the nearby macrocell users, and then want to reduce interferences between the small cells. Since the interference effect of small cells on the nearby macrocell users mainly depends on the small cells' position, the proposed algorithm includes a self-configuration to flexibly allocate frequency channels according to the variation of downlink quality of the macrocell users. Furthermore the algorithm is very simple and practical, which is main contribution of this paper. We observe that the proposed algorithm provides 82-94% of maximum achievable throughput.

Analysis of Major Error Factors in Coherent Beam Combination: Phase, Tip Tilt, Polarization Angle, and Beam Quality

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Yoonchan Jeong
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.406-415
    • /
    • 2024
  • The major error factors that degrade the efficiency of coherent beam combining (CBC) are numerically studied in a comprehensive manner, paying particular attention to phase, tip-tilt, polarization angle, and beam quality. The power in the bucket (PIB), normalized to the zero-error PIB, is used as a figure of merit to quantify the effect of each error factor. To maintain a normalized PIB greater than or equal to 95% in a 3-channel CBC configuration, the errors in phase, tip-tilt, and polarization angle should be less than 1.06 radians, 1.25 ㎛, and 1.06 radians respectively, when each of the three parameters is calculated independently with the other two set to zero. In a worst-case scenario of the composite errors within the parameter range for the independent-95%-normalized-PIB condition, the aggregate effect would reduce the normalized PIB to 83.8%. It is noteworthy that the PIB performances of a CBC system, depending on phase and polarization-angle errors, share the same characteristic feature. A statistical approach for each error factor is also introduced, to assess a CBC system with an extended number of channels. The impact of the laser's beam-quality factor M2 on the combining efficiency is also analyzed, based on a super-Gaussian beam. When M2 increases from 1 to 1.3, the normalized PIB is reduced by 2.6%, 11.8%, 12.8%, and 13.2% for a single-channel configuration and 3-, 7-, and 19-channel CBC configurations respectively. This comprehensive numerical study is expected to pave the way for advances in the evaluation and design of multichannel CBC systems and other related applications.