• Title/Summary/Keyword: changes in gene expression

Search Result 1,019, Processing Time 0.033 seconds

Toxicogenomics Analysis on Thioacetamide-induced Hepatotoxicity in Mice

  • Lim, Jung-Sun;Jeong, Sun-Young;Hwang, Ji-Yoon;Park, Han-Jin;Cho, Jae-Woo;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.126-133
    • /
    • 2006
  • Thioacetamide (TA) is well known hepatotoxic and hepatocarcinogenic agent. TA also diminishes the contents of hepatic cytochrome P450 and inhibits the enzyme activity of the hepatic mixed function oxidases. TA metabolite, thioacetamide-s-oxide, is further transformed into a still unknown highly reactive metabolite that binds to macromolecules. In this study, we focused on TA-induced gene expression at hepatotoxic dose. Mice were exposed to two levels (5 mg/kg or 50 mg/kg i.p.) of TA, sampled at 6 or 24 h, and hepatic gene expression levels were determined to evaluate dose and time dependent changes. We evaluated hepatotoxicity by serum AST and ALT level and histopathological observation. Mean serum activities of the liver leakage enzymes, AST and ALT, were slightly increased compare to control. H & E and PAS evaluation of stained liver sections revealed TA-associated histopathological finding in mice. Centrilobular eosinophilic degeneration was observed at high dose-treated mice group. Hepatic gene expression was analyzed by QT clustering. Clustering of high dose-treated samples with TA-suggests that gene expressional changes could be associated from toxicity as measured by traditional biomarkers in this acute study.

Hepatic Gene Expression Analysis of 1, 1-Dichloroethylene Treated Mice

  • Yoon, Seok-Joo;Oh, Jung-Hwa;Park, Han-Jin;Kim, Yong-Bum
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 2007
  • 1, 1-dichloroethylene (DCE) is well known hepatotoxicant as a model acute hepatotoxicity and selectively injure the bile canalicular membrane of centrilobular hepatocytes. In this study, we investigated hepatic gene expression and histopathological changes in response to DCE treatment. DCE was administered once daily at 20 mg/kg up to 14 days via intraperitoneal injection. Five mice were used in each test group and were sacrificed at 1, 7, and 14 days. Serum biochemical and histopathological analysis were performed for evaluation of hepatotoxicity level. Direct bilirubin and total bilirubin activities were slightly elevated in treated group at 7 days. DCE treatment for 7 days resulted in centrilobular hepatocyte hypertrophy and hepatocyte vacuolation, and mild hepatocyte vacuolation and high hepatocyte basophilia were observed in 14 days treated group. One hundred twenty three up-regulated genes and 445 down-regulated genes with over 2-fold changes between treated and control group at each time point were used for pathway analysis. These data may contribute in understanding the molecular mechanism DCE-induced hepatotoxicity.

Reduced Osteogenic Differentiation Potential In Vivo in Acute Myeloid Leukaemia Patients Correlates with Decreased BMP4 Expression in Mesenchymal Stromal Cells

  • Pedro L. Azevedo;Rhayra B. Dias;Liebert P. Nogueira;Simone Maradei;Ricardo Bigni;Jordana S. R. Aragao;Eliana Abdelhay;Renata Binato
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.227-232
    • /
    • 2022
  • The osteogenic differentiation potential of mesenchymal stromal cells (hMSCs) is an essential process for the haematopoiesis and the maintenance of haematopoietic stem cells (HSCs). Therefore, the aim of this work was to evaluate this potential in hMSCs from AML patients (hMSCs-AML) and whether it is associated with BMP4 expression. The results showed that bone formation potential in vivo was reduced in hMSCs-AML compared to hMSCs from healthy donors (hMSCs-HD). Moreover, the fact that hMSCs-AML were not able to develop supportive haematopoietic cells or to differentiate into osteocytes suggests possible changes in the bone marrow microenvironment. Furthermore, the expression of BMP4 was decreased, indicating a lack of gene expression committed to the osteogenic lineage. Overall, these alterations could be associated with changes in the maintenance of HSCs, the leukaemic transformation process and the development of AML.

Extracellular Superoxide Dismutase (EC-SOD) Transgenic Mice: Possible Animal Model for Various Skin Changes

  • Kim, Sung-Hyun;Kim, Myoung-Ok;Lee, Sang-Gyu;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2006
  • We have generated transgenic mice that expressed mouse extracellular superoxide dismutase (EC-SOD) in their skin. In particular, the expression plasmid DNA containing human keratin K14 promoter was used to direct the keratinocyte-specific transcription of the transgene. To compare intron-dependent and intron-independent gene expression, we constructed two vectors. The vector B, which contains the rabbit -globin intron 2, was not effective for mouse EC-SOD overexpression. The EC-SOD transcript was detected in the skin, as determined by Northern blot analysis. Furthermore, EC-SOD protein was detected in the skin tissue, as demonstrated by Western blot analysis. To evaluate the expression levels of EC-SOD in various tissues, we purified EC-SOD from the skin, lungs, brain, kidneys, livers, and spleen of transgenic mice and measured its activities. EC-SOD activities in the transgenic mice skin were approximately 7 fold higher than in wild-type mice. These results suggest that the mouse overexpressing vector not only induces keratinocyte-specific expression of EC-SOD, but also expresses successfully functional EC-SOD. Thus, these transgenic mice appeared to be useful for the expression of the EC-SOD gene and subsequent analysis of various skin changes, such as erythema, inflamation, photoaging, and skin tumors.

Upregulation of thiamine (vitamin B1) biosynthesis gene upon stress application in Anabaena sp. and Nannochloropsis oculata

  • Fern, Lee Li;Abidin, Aisamuddin Ardi Zainal;Yusof, Zetty Norhana Balia
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.462-471
    • /
    • 2017
  • Thiamine pyrophosphate (TPP), the active form of thiamine is a cofactor for enzymes involved in central metabolism pathways. However, it is also known to have a role as a stress signaling molecule in response to environmental changes. Anabaena sp. and N. oculata are microorganisms which are abundantly found in Malaysia's freshwater and marine ecosystem. However, not much studies have been done especially in regards to thiamine biosynthesis. This work aimed to amplify of gene transcripts coding for thiamine biosynthesis enzymes besides looking at the expression of thiamine biosynthesis genes upon stress application. Various stress inducers were applied to the cultures and RNA was extracted at different time points. The first two genes, ThiC and ThiG/Thi4 encoding enzymes of the pyrimidine and thiazole branch respectively in the thiamine biosynthesis pathway were identified and amplified. The expression of the genes were analysed via RT-PCR and the intensity of bands were analysed using ImageJ software. The results showed up to 4-fold increase in the expression of ThiC and ThiG gene transcript as compared to control sample in Anabaena sp. ThiC gene in N. oculata showed an expression of 6-fold higher as compared to control sample. In conclusion, stresses induced the expression of the gene coding for one of the most important enzymes in thiamine biosynthesis pathway. This is an agreement with the hypothesis that overexpression of thiamine is crucial in assisting plants to combat abiotic stresses.

Gene Expression Analysis of So Called Asian Dust Extracts in Human Acute Myeloid Leukemia Cells

  • Choi, You-Jin;Yin, Hu-Quan;Park, Eun-Jung;Park, Kwang-Sik;Kim, Dae-Seon;Lee, Byung-Hoon
    • Toxicological Research
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • As the frequency and the intensity of so called Asian dust (AD) events have increased, public concerns about the adverse health effects has spiked sharply over the last two decades. Despite the recent reports on the correlation between AD events and the risk for cardiovascular and respiratory disease, the nature of the toxicity and the degree of the risk are yet largely unknown. In the present study, we investigated the effects of the dichloromethane extract of AD (AD-X) and that of urban dust (NAD-X) collected during a non-AD period on gene expression in HL-60 cells using Illumina Sentrix HumanRef-8 Expression BeadChips. Global changes in gene expression were analyzed after 24 h of incubation with 50 or 100 ${\mu}g$/ml AD-X and NAD-X. By one-way analysis of variance (p < 0.05) and Benjamini-Hochberg multiple testing correction for false discovery rate of the results, 573 and 297 genes were identified as AD-X- and NAD-X-responsive, respectively. The genes were classified into three groups by Venn diagram analysis of their expression profile, i.e., 290 AD-X-specific, 14 NAD-X-specific, and 283 overlapping genes. Quantitative realtime PCR confirmed the changes in the expression levels of the selected genes. The expression patterns of five genes, namely SORL1, RABEPK, DDIT4, AZU1, and NUDT1 differed significantly between the two groups. Following rigorous validation process, these genes may provide information in developing biomarker for AD exposure.

Profile of Gene Expression Changes Treated with Compound K Induced Cell Cycle Arrest and Cell Death of Prostate Cancer PC-3 Cell Line (인간 전립선암 PC-3 세포에서 Compound K에 의한 세포주기 조절 및 세포사멸 유전자 발현 변화)

  • Kim, Kwang-Youn;Park, Kwang-Il;Ahn, Soon-Cheol
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.267-275
    • /
    • 2021
  • Objectives : Previously, we reported that compound K isolated from fermented ginseng by Aspillus oryzae has a wide biochemical and pharmacological effect, including anti-cancer activity in prostate cancer PC-3 cells. Despite these findings, its signaling pathway and gene expression pattern are not clearly understood. Methods : To confirm the gene expression study of treated with compound K in PC-3 cells, a cDNA microarray chip composed of 44K human cDNA probes was used. MTT assay, western blot analysis, propidium iodide staining, and annexin V/propidium iodide staining were analyzed. Results : We confirmed the differences of gene expression profiles. Then, we analyzed with the cell cycle arrest, cell death and cell proliferation related genes using DAVID database. Conclusions : Our finding should be useful for understanding genome-wide expression patterns of compound K-mediated cell cycle arrest toward induction of cell death and be helpful for finding future cancer therapeutic targets for prostate cancer cells.

PPARα-Target Gene Expression Requires TIS21/BTG2 Gene in Liver of the C57BL/6 Mice under Fasting Condition

  • Hong, Allen Eugene;Ryu, Min Sook;Kim, Seung Jun;Hwang, Seung Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.140-149
    • /
    • 2018
  • The $TIS21^{/BTG2/PC3}$ gene belongs to the antiproliferative gene (APRO) family and exhibits tumor suppressive activity. However, here we report that TIS21 controls lipid metabolism, rather than cell proliferation, under fasting condition. Using microarray analysis, whole gene expression changes were investigated in liver of TIS21 knockout (TIS21-KO) mice after 20 h fasting and compared with wild type (WT). Peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$) target gene expression was almost absent in contrast to increased lipid synthesis in the TIS21-KO mice compared to WT mice. Immunohistochemistry with hematoxylin and eosin staining revealed that lipid deposition was focal in the TIS21-KO liver as opposed to the diffuse and homogeneous pattern in the WT liver after 24 h starvation. In addition, cathepsin E expression was over 10 times higher in the TIS21-KO liver than that in the WT, as opposed to the significant reduction of thioltransferase in both adult and fetal livers. At present, we cannot account for the role of cathepsin E. However, downregulation of glutaredoxin 2 thioltransferase expression might affect hypoxic damage in the TIS21-KO liver. We suggest that the $TIS21^{/BTG2}$ gene might be essential to maintain energy metabolism and reducing power in the liver under fasting condition.

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

Studies on Gene Expression of Imperatorin treated in HL-60 cell line using High-throughput Gene Expression Analysis Techniques (Imperatorin을 처리한 HL-60 백혈병 세포주에서 대규모 유전자 분석 발현 연구)

  • Kang Bong-Joo;Cha Min-Ho;Jeon Byung Hun;Yun Yong Gab;Yoon Yoo Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1028-1035
    • /
    • 2004
  • Imperatorin, a biologically active furanocoumarin from the roots of Angelica dahurica (Umbelliferae), was mutagenic and induced transformation of mouse fibroblast cell lines, whereas it provided inhibiting effects on mutagenesis and carcinogenesis induced by various carcinogens. Furthermore, it has been suggested that imperatorin may have potential anticarcinogenic effects when administered orally in the diet. In addition to its anticarcinogenic properties, imperatorin has been shown to possess anticancer activities. We investigated the macro scale gene expression analysis on the HL-60 cells treated with imperatorin. Imperatorin (10μM) were used to treat the cells for 6h, 12h, 24h, 48h, and 72h. In a human cDNAchip study of 10,000 genes evaluated 6, 12, 24, 48, 72 hours after treated with imperatorin in HL-60 cells. Hierarchical cluster against the genes which showed expression changes by more than 2 fold. Three hundred eighty six genes were grouped into 6 clusters by a hierarchical clustering algorithm. Pathway analysis using gene microarray pathway prof Her that is a computer application designed to visualize gene expression data on screen representing biological pathways and groupings of genes.