• Title/Summary/Keyword: change of soil properties

Search Result 423, Processing Time 0.032 seconds

The Soil Improvement and Plant Growth on the Newly-Reclaimed Sloped land VI. Relationship between annual change of soil phsico-chemical properties and yield of silage corn (신개간경사지 토양개량과 작물생육에 관한 연구 VI. 토양의 물리화학성 년차간 변화가 옥수수 청예수량에 미치는 영향)

  • 허봉구;김무성
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.1
    • /
    • pp.22-29
    • /
    • 1991
  • This study was experimented to obtain the basic information on the changeable aspect and improvement of soil fertility in newly-reclaimed sloped land. Silage corn was cultivated under the six different treatments for 4 years. The relation between the amount or ratio of annual changes of soil physico-chemical properties and yield of silage corn were analyzed. Soil bulk density was decreased in 3rd year at topsoil, but that decreased in 4th year at subsoil. Soil organic matter also decreased in 2nd year at topsoil, and decreased continuously at subsoil. Bulk density and hardness of soil depths showed significant negative simple correlation with dry matter yield and cation exchange capacity showed positive. Correlation coefficient of chemical properties with dry matter yield were low. The range of annual changes of moisture percent, hardness and organic matter were wider than the other properties. The significantly different of physical properties were higher than the chemical properties, and those of topsoil were higher than subsoil. According to multiple regression between yield and physico-chemical properties of subsoil, bulk density and cation exchange capacity were in the greatest contribution at the variations, but bulk density was greatest at the ratios.

  • PDF

Chronological Role of the Soil Research in Korea - Analysis of Research Reports on Soil from 1906 to 2012 -

  • Yun, Sun-Gang;Kwon, Soon-Ik;Hong, Seung-Chang;Kim, Min-Kyeong;Chae, Mi-Jin;Park, Chan-Won;Jung, Goo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.303-307
    • /
    • 2013
  • Research reports on soil during the years from 1906 to 2012 have been analyzed to understand the role and pattern of soil research in agriculture. The number of research reports in relation with the key word of soils were 2,211 cases and classified in accordance with the criteria of research area, research subject, and research place of report papers. During the 40 years from 1906 to 1946, research work on soil chemistry was reached 62%, highest in the research area. In the case of research subject, research reports on soil fertility and soil nutrients was highest as 42.2%, and the next subject on soil salt and desalinization was about 19.5%. Research places were in the order of paddy as 34.1%, upland as 23.7%, and reclaimed soil as 22.5%. From 1953 to 2012 during 60 years, in the research area report papers were mainly concentrated on chemistry area as 32% and the next was physics as 26%, and environment as 12%. In the case of research subject during the same period, nutrient management report was reached 21.1%, and soil improvement on chemical and physical properties for optimum crop growth was 11.9%. Soil survey and data base establishment report was 8.6%. Research place were in the order of upland as 34.9%, paddy as 25.7%, and vinyl house as 12.5%, which showed reversed pattern compared to that of before 40 years.

Nutrient Balances and Soil Properties Affected by Application of Soybean and Barley Residues

  • Oh, Taek-Keun;Sonn, Yeon-Kyu;Lee, Dong Sung;Kim, Myung-Sook;Kim, Seok-Cheol;Yun, Hong Bae;Lee, Deog-Bae;Lee, Chang-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.120-126
    • /
    • 2014
  • An accurate analysis of nutrient balance in different cropping systems is necessary for improving soil fertilities, causing higher crop yields and quality. This study was carried out to investigate the nutrient balance, changes in soil properties, and their effects on crop yield in long-term field cultivation under mono- and rotation-cropping systems (MCS and RCS, respectively). The analytical results of the soil properties showed that the application of mineral fertilizers alone in the MCS leads the reduction of soil CEC, exchangeable Ca, and microbial biomass C and N. Compared with the MCS of soybean, the RCS of soybean and barley significantly improved the soil properties, which increased crop yield. It might be due to the barley residue added to the RCS soil. Mean nutrient balances for 4 years were -55.9 kg N, +34.7 kg $P_2O_5$, and -0.3 kg $K_2O$ $ha^{-1}$ for the MCS and +19.7 kg N, +107.4 kg $P_2O_5$, and -48.6 kg $K_2O$ $ha^{-1}$ for the RCS, respectively. These nutrient imbalances mean that conventional fertilizer recommendations were inadequate for maintaining soil nutrient balance. From these results, we can conclude that the crop rotation may change comprehensive physical, chemical, and biological soil properties. These changes could affect the nutrient balance and then the crop yield.

The Effect on the growth of landscaping trees by fixed trampling in brick paved under-surface soil physical properties -Sand bed's thickness & prticle size were setted by experimental variable factors (일정 답압시 보도블럭포장재 하부 토양물리성의 변화가 조경수 생육에 미치는 영향 - 포설모레 두께 및 립경을 실험변이 인자로 설정하여 -)

  • 조재현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.94-103
    • /
    • 1997
  • The purpose of this study is to find out the effects of brick paved under-surface soil physical properties which are changed by fixed trampling. Thus, a sandy loam which is known as a profitable soil for plants is used an experimental soil to study the changes of the soil physical properties. It is related to sand bed's thickness & particle size which are settled by experimental variable factors. According to the variation of sand bed's particle size, bulk density and soil hardness at natural dryed soilcondition result in 0.075~2.00mm>2.00~5.00mm>2.00~8.00mm>5.00~8.00mm, and water content at natural dryed soil condition are observed being insensible change rate from the point that sand thickness is 30~40mm and more sand bed's thickness constructed by the variation of sand bed's thickness.

  • PDF

Chemical Properties of Paddy Soils and Factors Affecting Their Change in Jeonnam Province

  • Kim, Sun-Kook;Kim, Hyeon-Ji;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.492-498
    • /
    • 2015
  • The long-term changes in the soil properties are closely related to the policy direction and the national program for the soil management. In this study, chemical properties of paddy soils in Jeonnam province were investigated at four-year interval since 1999 and the factors affecting change of chemical properties were analyzed in relation to the soil management policies. Chemical fertilizers supplied to Jeonnam province reduced by 57% in 2013 as compared with 1999, and the ratio of Jeonnam province to the national fertilizer supply gradually decreased to 14.1% in 2013 from 17.6% in 1999 due to national policies to reduce use of chemical fertilizers in the 2000s. In the chemical analysis of paddy soils in Jeonnam province, pH value tended to increase gradually within the optimal range. Available phosphate and exchangeable potassium content were always higher than the optimal range and showed no significant difference since 1999. Organic matter, exchangeable calcium and available silicate content were found to be lower than average content in the whole country as well optimal range for rice cultivation in 1999, but were higher than average content in the whole country and optimal range in 2011 because of faster rate of increase in Jeonnam province than the other region since the mid-2000s. The cause of increase in organic matter, exchangeable calcium and available silicate contents is considered to be the increased use of green manure crops and by-products fertilizer as an alternatives for conventional application of chemical fertilizers and soil amendment such as silicate fertilizer for agronomic control of the disease and insect pest in rice cultivation of environmentally-friendly agriculture.

The Impacts of Runoff the Nonpoint Source Pollution and Soil Physical Change for Mountainous Management Practice (고랭지 영농방법이 비점원오염 물질의 유출과 토양의 물리적 변화에 미치는 영향)

  • 최중대;강태영;김도찬
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.521-526
    • /
    • 1998
  • This study was initiated to build runoff plots, install soil and water quality monitoring systems and collect background data from the plots and soils to assess runoff the nonpoint source pollution and soil physical change in mountainous soils. Eleven 3 $\times$ 15 m runoff plots and monitoring systems were installed at a field of National Alpine Agricultural Experiment Station to monitor soil physical change, and discharge of nonpoint source pollutant. Corn and potato were cultivated under different fertilizer, tillage and residue cover treatments. The soil has a single-layered cluster structure that has a relatively good hydrologic properties and can adsorb a large amount of nutrient. 11 runoff plots were treated and monitored with respect to physical property of the soil, runoff and sediment discharge.

  • PDF

Release Pattern of Urea from Metal-urea-clay Hybrid with Montmorillonite and Its Impact on Soil Property

  • Kim, Kwang-Seop;Choi, Choong-Lyeal;Lee, Dong-Hoon;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.545-550
    • /
    • 2011
  • Urea intercalated into montmorillonite (MT) exhibits remarkably enhanced N use efficiency, maintaining its fast effectiveness. This study dealt with the release property of urea from metal-urea-clay hybrid with MT (MUCH) under continuous-flow conditions and the cumulative impacts of its successive application on physicochemical properties of soils. Releases of urea were completed within 4 hrs under continuous-flow condition regardless of the types and the leaching solutions. However, urea release property was significantly affected by both the form of fertilizer and the presence of electrolytes in solution. The fast release property of urea from MUCH in continuous-flow condition was not significantly affected by soil properties such as soil pH and soil texture. In addition, its successive application did not lead to any noticeable change in soil physicochemical properties, water stable aggregate rate, water holding capacity and cation exchange capacity in both sandy loam and clay loam soils. Therefore, this study strongly supported that urea intercalated into MT could be applied as fast-effective N fertilizer, in particular for additional N supply.

Changes in the Physicochemical Properties of Soil According to Soil Remediation Methods (토양 정화 방법에 따른 토양의 물리화학적 특성 변화)

  • Yi, Yong-Min;Oh, Cham-Teut;Kim, Guk-Jin;Lee, Chul-Hyo;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.36-43
    • /
    • 2012
  • Various methods are used to remediate soil contaminated with heavy metals or petroleum. In recent years, harsh physical and chemical remediation methods are being used to increase remediation efficiency, however, such processes could affect soil properties and degrade the ecological functions of the soil. Effects of soil washing, thermal desorption, and land farming, which are the most frequently used remediation methods, on the physicochemical properties of remediated soil were investigated in this study. For soils smaller than 2 mm, the soil texture were changed from sandy clay loam to sandy loam because of the decrease in the clay content after soil washing, and from loamy sand to sandy loam because of the decrease in the sand content and increase in silt content during thermal desorption, however, the soil texture remained unchanged after land farming process. The water-holding capacity, organic matter content, and total nitrogen concentration of the tested soil decreased after soil washing. A change in soil color and an increase in the available phosphate concentration were observed after thermal desorption. Exchangeable cations, total nitrogen, and available phosphate concentration were found to decrease after land farming; these components were probably used by microorganisms during as well as after the land farming process because microbial processes remain active even after land farming. A study of these changes can provide information useful for the reuse of remediated soil. However, it is insufficient to assess only soil physicochemical properties from the viewpoint of the reuse of remediated soil. Potential risks and ecological functions of remediated soil should also be considered to realize sustainable soil use.

Seismic evaluation of fluid-elevated tank-foundation/soil systems in frequency domain

  • Livaoglu, R.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.101-119
    • /
    • 2005
  • An efficient methodology is presented to evaluate the seismic behavior of a Fluid-Elevated Tank-Foundation/Soil system taking the embedment effects into accounts. The frequency-dependent cone model is used for considering the elevated tank-foundation/soil interaction and the equivalent spring-mass model given in the Eurocode-8 is used for fluid-elevated tank interaction. Both models are combined to obtain the seismic response of the systems considering the sloshing effects of the fluid and frequency-dependent properties of soil. The analysis is carried out in the frequency domain with a modal analysis procedure. The presented methodology with less computational efforts takes account of; the soil and fluid interactions, the material and radiation damping effects of the elastic half-space, and the embedment effects. Some conclusions may be summarized as follows; the sloshing response is not practically affected by the change of properties in stiff soil such as S1 and S2 and embedment but affected in soft soil. On the other hand, these responses are not affected by embedment in stiff soils but affected in soft soils.

Effects of Soil Amendment Application on Soil Physico-chemical Properties and Yields of Summer Forage Crops in the Sukmoon Reclaimed Tidal Land in Korea (석문 간척지에서 돈분액비 및 석고처리가 여름철 사료작물 수량 및 토양이화학성에 미치는 영향)

  • Choi, Ki-Choon;Yoon, Sei-Hyung;Shin, Jae-Soon;Kim, Dong-Kwan;Han, Hyo-Shim;Supanjani, Supanjani;Lee, Kyung-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.354-361
    • /
    • 2010
  • Soil physico-chemical properties and microbial densities are affected by organic sources and soil amendment applied to improve soil environments or quality. Generally organic fertilizer effects on forage crops yield and soil properties are partly due to changes of soil composition. We investigated the effects of swine slurry (SS), swine slurry composting-biofilteration(SCB) and chemical fertilizer(F) with gypsum(G) combinations on soil physico-chemical properties and yields of summer forage crop in the Sukmoon reclaimed tidal land in Korea. The forage crops used in this experiment were corn and sorghum$\times$sudangrass hybrid(hereafter sorghum). Our results showed that the soil physico-chemical properties in the combined (F+G, SS+G, SCB+G) treatments increased contents of organic matter and exchangeable $Ca^{2+}$, but exchangeable $Na^+$, $K^+$ and $Mg^{2+}$ reduced to 1-10% for two forage crops, compared to non-combined (F, SS, SCB) treatment. The density of soil microorganism such as bacteria, actinomycetes and fungi, increased significantly by SS+G and SCB+G treatments. This means that treatment of combined organic fertilizer with G lowered salinity levels and improved with microbial growth. The combined treatments also increased the total yields 2.3-6.2% for corn and 2.0-8.7% for sorghum, compared with non-combined treatment. This experiment suggests the combined treatments could increase the total yields of summer forage crops and change of soil physico-chemical properties in the Sukmoon reclaimed tidal land in Korea.