• Title/Summary/Keyword: chain migration

Search Result 117, Processing Time 0.025 seconds

A numerical analysis of the equivalent skeleton void ratio for silty sand

  • Dai, Bei-Bing;Yang, Jun;Gu, Xiao-Qiang;Zhang, Wei
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • Recent research on the behavior of silty sand tends to advocate the use of equivalent skeleton void ratio to characterize the density state of this type of soil. This paper presents an investigation to explore the physical meaning of the equivalent skeleton void ratio by means of DEM simulations for assemblies of coarse and fine particles under biaxial shear. The simulations reveal that the distribution pattern of fine particles in the soil skeleton plays a crucial role in the overall macroscopic response: The contractive response observed at the macro scale is mainly caused by the movement of fine particles out of the force chains whereas the dilative response is mainly associated with the migration of fine particles into the force chains. In an assembly of coarse and fine particles, neither all of the fine particles nor all of the coarse ones participate in the force chains to carry the external loads, and therefore a more reasonable definition for equivalent skeleton void ratio is put forward in which a new parameter d is introduced to take into account the fraction of coarse particles absent from the force chains.

Effects of human collagen α-1 type I-derived proteins on collagen synthesis and elastin production in human dermal fibroblasts

  • Hwang, Su Jin;Kim, Su Hwan;Seo, Woo-Young;Jeong, Yelin;Shin, Min Cheol;Ryu, Dongryeol;Lee, Sang Bae;Choi, Young Jin;Kim, KyeongJin
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.329-334
    • /
    • 2021
  • Collagen type I is the most abundant form of collagen in human tissues, and is composed of two identical α-1 type I chains and an α-2 type I chain organized in a triple helical structure. A previous study has shown that human collagen α-2 type I (hCOL1A2) promotes collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs). However, the biological effects of human collagen α-1 type I (hCOL1A1) on various skin properties have not been investigated. Here, we isolate and identify the hCOL1A1-collagen effective domain (CED) which promotes collagen type I synthesis. Recombinant hCOL1A1-CED effectively induces cell proliferation and collagen biosynthesis in HDFs, as well as increased cell migration and elastin production. Based on these results, hCOL1A1-CED may be explored further for its potential use as a preventative agent against skin aging.

Ameliorating effects of Cuscuta chinensis Lamak extract on hind-limb ischemia, and angiogenic- or inflammatory associated factors in ovariectomized mice

  • Hye Jin Kim;Hyun Yang;Dong Ho Jung;Joo Tae Hwang;Byoung‑Seob Ko
    • Molecular Medicine Reports
    • /
    • v.19 no.4
    • /
    • pp.3321-3329
    • /
    • 2019
  • Cuscuta chinensis Lamak (CCL) has traditionally been used in Korea to treat sexual disorders and skin problems. The aim of the present study was to investigate the effects of CCL extract on surgical injury-induced ischemia in the hind limbs of mice. Specifically, female C57BL/6 mice were ovariectomized, and their hind-limb vessels were ligated with surgical silk (6-0) and excised. CCL (150 or 450 mg/kg/BW) was then administered to the mice for 3 weeks, and the blood flow rate was evaluated using a laser Doppler system at -7, 0, 7, 14 and 21 days following hind-limb ischemia. The serum expression profiles of angiogenic and inflammatory mediators were measured using an antibody array, and the transcript levels were reverse transcription-quantitative polymerase chain reaction. The rate of hind limb blood flow was normalized to non-ischemic lesions and revealed to be markedly elevated at 14 and 21 days following ischemia when compared with the vehicle group. The density of capillaries in the hind limbs was also significantly increased following treatment with CCL in a dose-dependent manner. In addition, the transcriptional expression of angiogenetic factors were upregulated, whereas that of inflammatory cytokines were downregulated. Finally, vascular endothelial cell migration and tube formation were evaluated in vitro using human umbilical vein endothelial cells (HUVECs) and identified to be significantly increased following treatment with CCL. Overall, the results of the present study indicate that CCL extract exhibits therapeutic potential for the treatment of hind-limb ischemia as it promotes peripheral angiogenic and anti-inflammatory effects in mice.

Streamlining ERP Deployment in Nepal's Oil and Gas Industry: A Case Analysis

  • Dipa Adhikari;Bhanu Shrestha;Surendra Shrestha;Rajan Nepal
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.140-147
    • /
    • 2024
  • Oil and gas industry is a unique sector with complex activities, long supply chains and strict rules for the business. It is important to use enterprise resource planning (ERP) systems to address these challenges as it helps in simplifying operations, improving efficiency and facilitating evidence-based decision making. Nonetheless, successful integration of ERP systems in this industry involves careful planning, customization and alignment with specific business processes including regulatory requirements. Several critical factors, such as strong change management, support of top managers and training that works have been identified in the study. Amongst the hurdles are employee resistance towards the changes, data migration complications and integration with existing systems. Nonetheless, NOCL's ERP implementation resulted in significant improvements in operating efficiency, better data visibility and compliance management. It also led to a decrease in financial reporting timeframes, more accurate inventory tracking and improved decision-making capabilities. The study provides useful insights on how to optimize oil and gas sector ERP implementations; key among them is practical advice including strengthening change management strategies, prioritizing data security and collaborating with ERP vendors. The research highlights the importance of tailoring ERP solutions to specific industry needs as well as emphasizes the strategic role of ongoing monitoring/feedback for future benefits sustainability.

Effect of Inhibition Macrophage Migration Inhibitory Factor Activation by Hominis Placenta Herbal Acupuncture on Rheumatic Arthritis (자하차약침(紫河車藥鍼)의 MIF 활성 억제를 통한 LPS 유발 류마티스성 관절염의 치료 효과)

  • Hwang, Ji-Hye;Cho, Hyun-Seok;Lee, Hyun-Jin;Lee, Dong-Gun;Jeong, Won-Je;Jung, Chan-Yung;Kim, Kyung-Ho
    • Journal of Acupuncture Research
    • /
    • v.25 no.3
    • /
    • pp.41-51
    • /
    • 2008
  • Objectives : This study is to evaluate Effect of Inhibition Macrophage Migration Inhibitory Factor(MIF) activation by Hominis Placenta Herbal Acupuncture(HPA) on Rheumatic Arthritis(RA). Hominis Placenta is the placenta of healthy human, which is vital-strengthening medical stuff. In recent years, Hominis Placenta applied to chronic diseases because it makes us more resistance to diseases. Therefore it is supposed that HPA is effective on RA, a kind of autoimmune disease. When RA is induced, MIF is activated, too. MIF affects the process of inflammatory disease including RA. Methods : In order to investigate the effect of Hominis Placenta extraction on MIF(early RA inducing cytokine) and MMP(Matrix Metallo Proteinase)-9 mRNA expression by means of Reverse Transcriptase- Polymerase Chain Reaction(RT-PCR). In this study, we investigated the effect of Hominis Placenta extraction on MIF(early RA inducing cytokine) and MMP-9 mRNA expression by means of RT-PCR. Besides we investigated changing of MIF in synovial membrane and, Interleukin-6 receptor(IL-6R)-$\alpha$(pro-inflammatory cytokine), Signal transducers and activators of transcription(STAT)-3, MMP-9 after treating mouse, which is artificially attacked with RA, with HPA on its $ST_{35}$, LE201 in vivo. Results : 1. As a result of treating Lipopolysaccharide(LPS)-stimulated Raw246.7cell with HPA, MIF(RA related cytokine) and MMP-9 mRNA expression is reduced in vitro. And this reaction is concentration-dependatant. 2. In synovial membrane of the mice treated with HPA, inhibition of MIF, IL-6R-$\alpha$, STAT3 & MMP-9 activation is observed in vivo. Conclusions : From the above results, it might be suggested that HPA mitigate tissue damage originated from RA, because it intercepts the early process of by inhibition MIF activity.

  • PDF

Effect of Suppressing the Activation of Macrophage Migration Inhibitory Factor by $Sambucus$ $williamsii$ $H_{ANCE}$ Extract & Pharmacopuncture Solution on Type II Collagen-induced Arthritis (접골목(接骨木)추출물 및 약침액에 의한 MIF 활성 조절능이 생쥐의 제2형 Collagen 유발 관절염에 미치는 영향)

  • Lee, Dong-Gun;Kim, Eun-Jung;Lee, Eun-Sol;Wang, Kai-Hsia;Cho, Hyun-Seok;Lee, Seung-Deok;Kim, Kap-Sung;Kim, Kyung-Ho
    • Journal of Acupuncture Research
    • /
    • v.29 no.1
    • /
    • pp.103-113
    • /
    • 2012
  • Objectives : The purpose of this study is to evaluate effect of suppressing the expression of cyclo-oxygenase-type-2 (COX-2) as a consequence of inhibition macrophage migration inhibitory factor (MIF) activation by $Sambucus$ $williamsii$ $Hance$ (SWH) pharmacopunctureon rheumatoid arthritis (RA). Methods : In vitro test, synoviocytes extracted from type II collagen-induced arthritis (CIA) mouse's knee joint were cultivated After that, each well of synoviocytes was mixed with the extract of SWH at the dosage of $0.4mg/m{\ell}$, $0.6mg/m{\ell}$, $0.8mg/m{\ell}$, and $1.0mg/m{\ell}$ respectively, and cultivated for 24 hours after the addition. Reverse transcriptase - polymerase chain reaction (RT-PCR) is used to investigate the expression of MIF, Tumor necrosis factor (TNF)-${\alpha}$, COX-2 mRNA. $In$ $vivo$ test, thirty DBA female mice were used, and each ten mice were allocated into three group; normal group, CIA-elicitated group, and group treated with SWH pharmacopuncture on it's the point of $ST_{35}$ after CIA elicitation. It is investigated that change of mice foot thickness, histologic change of sliced synovial joint of mouse, and extent change of MIF, TNF-${\alpha}$, COX-2 in synovial membrane. Results : $In$ $vitro$ test, the expressions of cytokine(MIF, TNF-${\alpha}$, COX-2) mRNAs related to RA were dose-dependent decreased. In the SWH pharmacopuncture group, foot thickness and histologic change of sliced synovial joint were decreased comparing with CIA-elicitated group's change. In the SWH pharmacopuncture group, the suppression of MIF, TNF-${\alpha}$, COX-2 in synovial membrane was clearly shown comparing with CIA-elicitated group's change. Conclusions : It might be suggested that SWH pharmacopuncture mitigate tissue damage originated from rheumatoid arthritis by suppressing the expression of COX-2 as a consequence of inhibition MIF activation.

Ubiquitin D Promotes Progression of Oral Squamous Cell Carcinoma via NF-Kappa B Signaling

  • Song, An;Wang, Yi;Jiang, Feng;Yan, Enshi;Zhou, Junbo;Ye, Jinhai;Zhang, Hongchuang;Ding, Xu;Li, Gang;Wu, Yunong;Zheng, Yang;Song, Xiaomeng
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.468-480
    • /
    • 2021
  • Ubiquitin D (UBD) is highly upregulated in many cancers, and plays a pivotal role in the pathophysiological processes of cancers. However, its roles and underlying mechanisms in oral squamous cell carcinoma (OSCC) are still unclear. In the present study, we investigated the role of UBD in patients with OSCC. Quantitative real-time polymerase chain reaction and Western blot were used to measure the expression of UBD in OSCC tissues. Immunohistochemistry assay was used to detect the differential expressions of UBD in 244 OSCC patients and 32 cases of normal oral mucosae. In addition, CCK-8, colony formation, wound healing and Transwell assays were performed to evaluate the effect of UBD on the cell proliferation, migration, and invasion in OSCC. Furthermore, a xenograft tumor model was established to verify the role of UBD on tumor formation in vivo. We found that UBD was upregulated in human OSCC tissues and cell lines and was associated with clinical and pathological features of patients. Moreover, the overexpression of UBD promoted the proliferation, migration and invasion of OSCC cells; however, the knockdown of UBD exerted the opposite effects. In this study, our results also suggested that UBD promoted OSCC progression through NF-κB signaling. Our findings indicated that UBD played a critical role in OSCC and may serve as a prognostic biomarker and potential therapeutic target for OSCC treatment.

Morphological and Photoluminescence Characteristics of Laterally Self-aligned InGaAs/GaAs Quantum-dot Structures (수평 자기정렬 InGaAs/GaAs 양자점의 형태 및 분광 특성 연구)

  • Kim J. O.;Choe J. W.;Lee S. J.;Noh S. K.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Laterally self-aligned InGaAs/GaAs quantum-dots (QDs) have been fabricated by using a multilayer stacking technique. For the growth optimization, we vary the number of stacks and the growth temperature in the ranges of 1-15 periods and $500-540^{\circ}C$. respectively, Atomic force microscope (AFM) images and photoluminescence (PL) spectra reveal that the lateral alignment of QDs is enhanced in extended length by an increased stack period, but severely degrades into film-like wires above a critical growth temperature. The morphological and the photoluminescence characteristics of laterally self-aligned InGaAs QDs have been analyzed through mutual comparisons among four samples with different parameters. An anisotropic arrangement develops with increasing number of stacks, and high-temperature capping allows isolated QDs to be spontaneously organized into a one-dimensionally aligned chain-like shape over a few ${\mu}m$, Moreover, the migration time allowed by growth interruption plays an additional important role in the chain arrangement of QDs. The QD chains capped at high temperature exhibit blue shifts in the emission energy, which may be attributed to a slight outdiffusion of In from the InGaAs QDs.

Analysis and Verification of Ancient DNA (고대 DNA의 분석과 검증)

  • Jee, Sang-hyun;Seo, Min-seok
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.387-411
    • /
    • 2007
  • The analysis of ancient DNA (aDNA) has become increasingly considerable anthropological, archaeological, biological and public interest. Although this approach is complicated by the natural damage and exogenous contamination of a DNA, archaeologists and biologists have attempted to understand issues such as human evolutionary history, migration and social organization, funeral custom and disease, and even evolutionary phylogeny of extinct animals. Polymerase chain reaction(PCR) is powerful technique that analyzes DNA sequences from a little extract of an ancient specimen. However, deamination and fragmentation are common molecular damages of aDNA and cause enzymatic inhibition in PCR for DNA amplification. Besides, the deamination of a cytosine residue yielded an uracil residue in the ancient template, and results in the misincorporation of an adenine residue in PCR. This promotes a consistent substitution (cytosine thymine, guanine adenine) to original nucleotide sequences. Contamination with exogenous DNA is a major problem in aDNA analysis, and causes oversight as erroneous conclusion. This report represents serious problems that DNA modification and contamination are the main issues in result validation of aDNA analysis. Now, we introduce several criterions suggested to authenticate reliance of aDNA analysis by many researchers in this field.

Anti-invasive Effect of Artemisia scoparia Halophyte Extract and its Solvent-partitioned Fractions in Human Fibrosarcoma Cells (인간 섬유육종세포에서 비쑥 추출물과 유기용매 분획물의 암전이 억제 효과)

  • Kim, Junse;Kong, Chang-Suk;Sim, Hyun-Bo;Seo, Youngwan
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1100-1109
    • /
    • 2021
  • The halophyte Artemisia scoparia is an edible medicinal plant, with insecticidal, anti-inflammatory, anticholesterol, antipyretic, and antibacterial effects. The aim of this study was to assess the inhibitory effect of crude extract and solvent-partitioned fractions obtained from A. scoparia on MMP-2 and MMP-9 activity in phorbol-12-myristate-13-acetate (PMA)-stimulated human fibrosarcoma HT-1080 cells using four different activity tests: gelatin zymography, MMP enzyme-linked immunosorbent assay (ELISA), wound healing assay, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot assay. A. scoparia samples were extracted twice with methylene chloride (MC) and twice with methanol (MeOH). After the MC and MeOH crude extracts were combined, the combined crude extracts showed a significant inhibitory effect against MMP-2 and MMP-9 enzymes. They were then fractionated into n-hexane, 85% (v/v) aqueous methanol (85% (v/v) aq.MeOH), n-butanol, and water according to solvent polarity. Among the four solvent-partitioned fractions, n-hexane and 85% (v/v) aq. MeOH fractions significantly inhibited MMP-2 and MMP-9 activity and cell mobility. In addition, the n-hexane and 85% (v/v) aq.MeOH fractions effectively inhibited MMP-2 and -9 activity in the gelatin zymography and MMP ELISA assay. In the wound healing assay, RT-PCR, and Western blot assay, all solvent-partitioned fractions, except the H2O fraction, significantly suppressed cell migration, as well as the expression levels of MMP-2 and -9 mRNA and proteins.