• Title/Summary/Keyword: chain finite

Search Result 142, Processing Time 0.026 seconds

Strength Analysis and Standardization for Closed Chocks by Using the Finite Elements Method (유한요소법을 이용한 클로즈드 초크의 구조검증 및 표준화에 대한 연구)

  • Jung, Jae-Wook;Lee, Byung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.132-145
    • /
    • 2012
  • Mooring fittings mean various devices and fittings to safely fasten vessels to quays, jetties and sea-floating buoys, etc. They include mooing winches, capstans, chocks, fairleads, guide rollers, bollards, and bitts. Not only the seats and reinforced parts for the installation of fittings but also ropes and chains for mooring and chain stoppers can be also considered. Because of damages to mooring fittings during mooring directly related to large-scale accidents such as the drifting of vessels, mooring fittings with strength appropriate for the physical features of the vessels must be installed. The reinforcement of the vessels on which the mooring fittings are installed must be designed to withstand the loads transferred from the fittings as well. Also mooring fittings with efficient strength should be required because damaged ships lead to sea pollution such as oil or fuel oil spillage. This study has been performed by the Finite Element Method for two aspects of closed chocks which are divided into structure-supporting shapes and working load. In the case of structure-supporting shapes, they have been performed in the field of sheet and bulwark. As for working load, it has been analyzed according to working load direction such as chock's side and below. At first, strength analysis for unique closed chocks has been carried out by using the Finite Element Method, they are applied for the situation when vessels pass by the panama canal. And then the experiment has been done to verify the analyzed date obtained by FEM. The experimental results were found to be similar to the numerical results with up to 16% difference. On the basis of the results obtained, standardization has been carried out by the Finite Element Method for various sizes of closed chocks.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble (다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발)

  • Kim, Tae-Jeong;Kim, Ki-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.327-340
    • /
    • 2015
  • General Circulation Models (GCMs) are the basic tool used for modelling climate. However, the spatio-temporal discrepancy between GCM and observed value, therefore, the models deliver output that are generally required calibration for applied studies. Which is generally done by Multi-Model Ensemble (MME) approach. Stochastic downscaling methods have been used extensively to generate long-term weather sequences from finite observed records. A primary objective of this study is to develop a forecasting scheme which is able to make use of a MME of different GCMs. This study employed a Nonstationary Hidden Markov Chain Model (NHMM) as a main tool for downscaling seasonal ensemble forecasts over 3 month period, providing daily forecasts. Our results showed that the proposed downscaling scheme can provide the skillful forecasts as inputs for hydrologic modeling, which in turn may improve water resources management. An application to the Nakdong watershed in South Korea illustrates how the proposed approach can lead to potentially reliable information for water resources management.

Inverse Estimation of Fatigue Life Parameters of Springs Based on the Bayesian Approach (베이지안 접근법을 이용한 스프링 피로 수명 파라미터의 역 추정)

  • Heo, Chan-Young;An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • In this study, a procedure for the inverse estimation of the fatigue life parameters of springs which utilize the field fatigue life test data is proposed to replace real test with the FEA on fatigue life prediction. The Bayesian approach is employed, in which the posterior distributions of the parameters are determined conditional on the accumulated life data that are routinely obtained from the regular tests. In order to obtain the accurate samples from the distributions, the Markov chain Monte Carlo (MCMC) technique is employed. The distributions of the parameters are used in the FEA for predicting the fatigue life in the form of a predictive interval. The results show that the actual fatigue life data are found well within the posterior predictive distributions.

A Dual Modeling Method for a Real-Time Palpation Simulator

  • Kim, Sang-Youn;Park, Se-Kil;Park, Jin-Ah
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • This paper presents a dual modeling method that simulates the graphic and haptic behavior of a volumetric deformable object and conveys the behavior to a human operator. Although conventional modeling methods (a mass-spring model and a finite element method) are suitable for the real-time computation of an object's deformation, it is not easy to compute the haptic behavior of a volumetric deformable object with the conventional modeling method in real-time (within a 1kHz) due to a computational burden. Previously, we proposed a fast volume haptic rendering method based on the S-chain model that can compute the deformation of a volumetric non-rigid object and its haptic feedback in real-time. When the S-chain model represents the object, the haptic feeling is realistic, whereas the graphical results of the deformed shape look linear. In order to improve the graphic and haptic behavior at the same time, we propose a dual modeling framework in which a volumetric haptic model and a surface graphical model coexist. In order to inspect the graphic and haptic behavior of objects represented by the proposed dual model, experiments are conducted with volumetric objects consisting of about 20,000 nodes at a haptic update rate of 1000Hz and a graphic update rate of 30Hz. We also conduct human factor studies to show that the haptic and graphic behavior from our model is realistic. Our experiments verify that our model provides a realistic haptic and graphic feeling to users in real-time.

Study of the Interaction between Tracked Vehicle and Terrain (궤도차량과 토양의 상호작용에 대한 연구)

  • Park, Cheon-Seo;Lee, Seung-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.140-150
    • /
    • 2002
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystems, i.e., the chassis subsystem and the track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. In this study, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical terce and the distance of an arbitrary track moved in the driving direction along the track. These distances and vertical forces obtained are used to get the deformation and sinkage of a terrain. The FEM(Finite Element Method) is adopted to analyze the interaction between tracked vehicle and terrain. The terrain is represented by a system of elements wish specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of isotropic soils are simulated.

Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model (유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석)

  • 이제원;왕세명;주재만;박승일;이성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF

ON THE NUMBER OF FUZZY SUBGROUPS OF ℤpm × ℤpn × ℤp

  • OH, JU-MOK;HWANG, KYUNG-WON;SIM, IMBO
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1181-1198
    • /
    • 2022
  • In this paper we are concerned with the number of fuzzy subgroups of a finite abelian p-group ℤpm × ℤpn × ℤp of rank three with order pm+n+ℓ. We obtain a recurrence relation for the number of fuzzy subgroups of a finite abelian p-group ℤpm × ℤpn × ℤp. In order to show that using this recurrence relation, one can find explicit formulas for the number of fuzzy subgroups of ℤpm × ℤpn × ℤp consecutively, we give explicit formulas for the number of fuzzy subgroups of ℤpm × ℤpn × ℤp where (n, ℓ) = (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (2, 2), (3, 2), (4, 2), (5, 2).

Optimal Design of Batch-Storage Network with Finite Intermediate Storage (저장조 용량제약이 있는 회분식 공정-저장조 그물망 구조의 최적설계)

  • Kim, Hyung-Min;Kim, Kyoo-Nyun;Lee, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.867-873
    • /
    • 2001
  • The purpose of this study is to find analytic solution of determining the optimal capacity (lot-size) of multiproduct acyclic multistage production and inventory system to meet the finished product demand under the constraint of finite intermediate storage. Intermediate storage is a practical way to mitigate the material flow imbalance through the line of supply and demand chain. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision-making about the capacity of processes and storage units is an important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ(Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. But EOQ/EPQ model is not suitable for the chemical plant design with highly interlinked processes and storage units because it is developed based on single product and single stage. This study overcomes the limitation of the classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked non-continuous processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied to describe the detail material flows among equipments. The objective function of this study is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of realistic description of the material flows between processes and storage units. the resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design problem confronted with economic situation.

  • PDF

Performance Analysis of Wireless Communication System with FSMC Model in Nakagami-m Fading Channel (Nakagami-m 페이딩 채널에서 FSMC 모델에 의한 무선 통신시스템의 성능 분석)

  • 조용범;노재성;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1010-1019
    • /
    • 2004
  • In this paper, we represent Nakagami-m fading channel as finite-State Markov Channel (FSMC) and analyze the performance of wireless communication system with varying the fading channel condition. In FSMC model, the received signal's SNR is divided into finite intervals and these intervals are formed into Markov chain states. Each state is modeled by a BSC and the transition probability is dependent upon the physical characterization of the channel. The steady state probability and average symbol error rate of each state and transition probability are derived by numerical analysis and FSMC model is formed with these values. We found that various fading channels can be represented with FSMC by changing state transition index. In fast fading environment in which state transition index is large, the channel can be viewed as i.i.d. channel and on the contrary, in slow fading channel where state transition index is small, the channel can be represented by simple FSMC model in which transitions occur between just adjacent states. And we applied the proposed FSMC model to analyze the coding gain of random error correcting code on various fading channels via computer simulation.