Browse > Article
http://dx.doi.org/10.12652/Ksce.2015.35.2.0327

Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble  

Kim, Tae-Jeong (Chonbuk National University)
Kim, Ki-Young (Korea Water Resources Corporation)
Kwon, Hyun-Han (Chonbuk National University)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.35, no.2, 2015 , pp. 327-340 More about this Journal
Abstract
General Circulation Models (GCMs) are the basic tool used for modelling climate. However, the spatio-temporal discrepancy between GCM and observed value, therefore, the models deliver output that are generally required calibration for applied studies. Which is generally done by Multi-Model Ensemble (MME) approach. Stochastic downscaling methods have been used extensively to generate long-term weather sequences from finite observed records. A primary objective of this study is to develop a forecasting scheme which is able to make use of a MME of different GCMs. This study employed a Nonstationary Hidden Markov Chain Model (NHMM) as a main tool for downscaling seasonal ensemble forecasts over 3 month period, providing daily forecasts. Our results showed that the proposed downscaling scheme can provide the skillful forecasts as inputs for hydrologic modeling, which in turn may improve water resources management. An application to the Nakdong watershed in South Korea illustrates how the proposed approach can lead to potentially reliable information for water resources management.
Keywords
Climate model; Hidden markov chain model; Downscaling; Correlation matrix;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Barnston, A. G., Mason, S. J., Goddard, L., Dewitt, D. G. and Zebiak, S. E. (2003). "Multimodel ensembling in seasonal climate forecasting at IRI." Bulletin of the American Meteorological Society, Vol. 84, No. 12, pp. 1783-1796.   DOI
2 Bates, B. C., Charles, S. P. and Hughes, J. P. (1998). "Stochastic downscaling of numerical climate model simulations." Environmental Modeling & Software, Vol. 13, No. 3, pp. 325-331.   DOI
3 Bundel, A. Y., Kryzhov, V. N., Min, Y. M., Khan, V. M., Vilfand, R. M. and Tishchenko, V. A. (2011). "Assessment of probability multimodel seasonal forecast based on the APCC model data." Russian Meteorology and Hydrology, Vol. 36, No. 3, pp. 145-154.   DOI
4 Cho, H. R., Hwang, S. H., Cho, Y. S. and Choi, M. H. (2013). "Analysis of spatial precipitation field using downscaling on the korean peninsula." Journal of Korea Water Resources Association, Vol. 46, No. 11, pp. 1129-1140 (in Korean).   DOI   ScienceOn
5 Chow, C. K. and Liu, C. N. (1968). "Approximating discrete probability distributions with dependence trees." IEEE Transactions on Information Theory, Vol. 14, pp. 462-467.   DOI
6 Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model." Nature, Vol. 408, No. 6809, pp.184-187.   DOI
7 Ekstorm, M. Fowler, H. J., Kilsby, C. G. and Jones, P. D. (2005). "New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 2. Future estimates and use in impact studies." Journal of Hydrology, Vol. 300, No. 1, pp. 234-251.   DOI   ScienceOn
8 Fowler, H. J., Ekstrom, M., Kilsby, C. G. and Jones, P. D. (2005). "New estimates of future changes in extreme rainfall across the UK using regional climate model intergrations. 1. Assessment of control climate." Journal of Hydrology, Vol. 300, No. 1, pp. 212-233.   DOI   ScienceOn
9 Frei, C., Scholl, R., Fukutome, S., Schmidli, J. and Vidale, P. L. (2006). "Future change of precipitation extremes in Europe: Intercomparison of Scenarios from Regional Climate Models." Journal of Geophysical Research: Atmospheres (1984-2012), Vol. 111, No. D6, DOI: 10.1029/2005JD005965.   DOI
10 Grimm, A. M. (2011). "Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change." Stochastic Environmental Research and Risk Assessment, Vol. 25, No. 4, pp. 537-554.   DOI
11 Karl, T. R., Wang, W. C., Schlesinger, M. E., Knight, R. W. and Portman, D. (1990). "A method of relating general circulation model simulated climate to the observed local climate. Part 1 : Seasonal Statistics." Journal of Climate, Vol. 3, No. 10, pp. 1053-1079.   DOI
12 Grum, M., Jorgensen, A. T., Johansen, R. M. and Linde, J. J. (2006). "The effect of climate change on urban drainage: An Evaluation Based on Regional Climate Model Simulations." Water Science & Technology, Vol. 54, No. 6-7, pp. 9-15.   DOI
13 Haugen, J. E. and Iversen, T. (2008). "Response in extremes of daily precipitation and wind from a downscaled multi-model ensemble of anthropogenic global climate change scenarios." Tellus A, Vol. 60, No. 3, pp. 411-426.   DOI
14 Hewitson, B. C. and Crane, R. G. (2006). "Consensus between GCm climate change projection with empirical downscaling : Precipitation Downscaling over South Africa." International Journal of Climatology, Vol. 26, No. 10, pp. 1315-1337.   DOI
15 Khalil, A. F., Kwon, H. H., Lall, U. and Kaheil, Y. H. (2010). "Predictive downscaling based on non-homegeneous hidden markov models." Hydrological Sciences Journal-Journal des Sciences Hydrologiques, Vol. 55, No. 3, pp. 333-350.   DOI   ScienceOn
16 Kim, T. J. (2014). Development of nonstationary spatio-temporal downscaling technique using general circulation model multimodel ensemble, Master's Thesis, Chonbuk National University, Jeonju, Jeollabuk, Republic of Korea.
17 Kim, T. J., Kwon, H. H., Lee, D. R. and Yoon, S. K. (2014). "Development of stochastic downscaling method for rainfall data using GCM." Journal of Korea Water Resources Association, Vol. 47, No. 9, pp. 825-838 (in Korean).   DOI
18 Kwon, H. H., Kim, T. J., Hwang, S. H. and Kim, T. W. (2013a). "Development of daily rainfall simulation model based on homegeneous hidden markov chain." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1861-1870 (in Korean).   DOI   ScienceOn
19 Kirshner, S., Smyth, P. and Robertson, A. W. (2004). "Conditional chow-liu tree structures for modeling discrete-valued vector time series." Appears in Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence (UAI2004), pp. 317-324.
20 Krishnamurti, T. N., Kishtawal, C. M., LaRow, T. E., Bachiochi, D. R., Zhang, Z., Williford, C. E., Gadgil, S. and Surendran, S. (1999). "Improved weather and seasonal climate forecasts from multimodel superensemble." Science, Vol. 285, No. 5433, pp. 1548-1550.   DOI   ScienceOn
21 Kwon, H. H., Kim, T. J., Kim, O. K. and Lee, D. R. (2013b). "Development of multi-site daily rainfall simulation based on homogeneous hidden markov chain model coupled with chow-liu tree structure." Journal of Korea Water Resources Association, Vol. 46, No. 10, pp. 1029-1040 (in Korean).   DOI
22 Kwon, H. H., Lall, U. and Obeysekera, J. (2009). "Simulation of daily rainfall scenarios with interannual and multidecadal climate cycles for south Florida." Stochastic Environmental Research Risk Assessment., Vol. 23, No. 7, pp. 879-896.   DOI
23 Kwon, H. H., Sivakumar, B., Moon, Y. I. and Kim, B. S. (2011). "Assessment of change in design flood frequency under climate change using a multivariate downscaling model and a precipitationrunoff model." Stochastic Environmental Research and Risk Assessment, Vol. 25, No. 4, pp. 567-581.   DOI
24 Matsuyma, Y. (2011). "Hidden markov model based on alpha-EM algorithm : Discrete and Continuous Alpha-HMMs." International Joint Conference, Vol. 7, No. 5, pp. 808-816.
25 Mailhot, A., Duchesne, S., Caya, D. and Talbot, G. (2007). "Assessment of future change in intensity-duration-frequency (IDF) curves for southern quebec using the canadian regional cliamte model (CRCM)." Journal of Hydrology, Vol. 347, No. 1, pp. 197-210.   DOI   ScienceOn
26 Mailhot, A., Kingumbi, A., Talbot, G. and Poulin, A. (2010). "Future changes in intensity and seasonal pattern of occurrence of daily and multi-day annual maximum precipitation over Canada." Journal of Hydrology, Vol. 388, No. 3, pp. 173-185.   DOI
27 Malcolm. M. R., Cawley, G. C., Harpham, C., Wilby, R. L. and Clare, M. G. (2006). "Downscaling heavy precipitation over the united kingdom: A Comparison of Dynamical and Statistical Methods and their Future Scenarios." International Journal of Climatology., Vol. 26, No. 10, pp. 1397-1415.   DOI   ScienceOn
28 Meehl, G. A., Zwiers, F., Evans, J., Knutson, T., Mearns, L. and Whetton, P. (2000). "Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change." Bulletin of the American Meteorological Society, Vol. 81, No. 3, pp. 427-436.   DOI
29 Min, Y. M., Kryjov, V. N. and Oh, J. H. (2011). "Probabilistic interpretation of regression-based downscaled seasonal ensemble predictions with the estimation of uncertainty." Journal of Geophysical Research: Atmospheres (1984-2012), Vol. 116, No. D8. DOI : 10.1029/2010JD015284.   DOI
30 Min, Y. M., Kryjov, V. N. and Park, C. K. (2009). "A probabilistic multimodel ensemble approach to seasonal prediction." Weather and Forecasting, Vol. 24, No. 3, pp. 812-828.   DOI
31 Sohn, S. J., Tam, C. Y. and Ahn, J. B. (2013). "Development of a multimodel based seasonal prediction system for extreme droughts and floods: A Case Study for South Korea." International Journal of Climatology, Vol. 33, No. 4, pp. 793-805.   DOI   ScienceOn
32 Muhammad, Z. H., Asaad, Y. S. and Bruce, W. M. (2011). "Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed." Stochastic Environmental Research and Risk Assessment, Vol. 25, No. 4, pp. 475-484.   DOI
33 Palmer, T., Andersen, U., Cantelaube, P., Davey, M., Deque, M., Doblas-Reyes, F. J., Feddersen, H., Graham, R., Gualdi, S., Gueremy, J. F., Hagedorn, R., Hoshen, M., Keenlyside, Noel, Latif, Mojib, Lazar, A., Maisonnave, E., Marletto, V., Morse, A. P., Orfila, B., Rogel, P., Terres, J. M. and Thomsen, M. C. (2004). "Development of a european multi-model ensemble system for seasonal to inter-annual prediction (DEMETER)." Bulletin of the American Meteorological Society, Vol. 85 No. 6. pp. 853-872. DOI : 10.1175/BAMS-85-6-853.   DOI
34 Shukla, J., Marx, L., Paolino, D., Straus, D., Anderson, J., Ploshay, J., Brankovic, C., Palmer, T., Chang, Y., Schubert, S., Suarez, M. and Kalnay, E. (2000). "Dynamical seasonal prediction." Bulletin of the American Meteorological Society, Vol. 81, No. 11, pp. 2593-2606.   DOI
35 Sohn, S. J., Tam, C. Y., Ashok, K. and Ahn, J. B. (2012). "Quantifying the reliability of precipitation datasets for monitoring large-scale East Asian precipitation variations." International Journal of Climatology, Vol. 32, No. 10, pp. 1520-1526.   DOI
36 Wang, B., Kang, I. S. and Lee, J. Y. (2004). "Ensemble simulations of asian-australian monsoon variability by 11 AGCMs." Journal of Climate, Vol. 17, No. 4, pp. 803-818.   DOI
37 Willems, P. and Vrac, M. (2011). "Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change." Journal of Hydrology, Vol. 402, No. 3, pp. 193-205.   DOI   ScienceOn