• Title/Summary/Keyword: cesium radioactivity

Search Result 19, Processing Time 0.017 seconds

Selective adsorption of Ba2+ using chemically modified alginate beads with enhanced Ba2+ affinity and its application to 131Cs production

  • Kim, Jin-Hee;Lee, Seung-Kon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3017-3026
    • /
    • 2022
  • The 131Cs radioisotope with a short half-life time and high average radiation energy can treat the cancer effectively in prostate brachytherapy. The typical 131Cs production processes have a separation step of the cesium from 131Ba to obtain a high specific radioactivity. Herein, we suggested a novel 131Cs separation method based on the Ba2+ adsorption of alginate beads. It is necessary to reduce the affinity of alginate beads to cesium ions for a high production yield. The carboxyl group of the alginate beads was replaced by a sulfonate group to reduce the cesium affinity while reinforcing their affinity to barium ions. The modified beads exhibited superior Ba2+ adsorption performances to native beads. In the fixed-bed column tests, the saturation time and adsorption capacity could be estimated with the Yoon-Nelson model in various injection flow rates and initial concentrations. In terms of the Cs elution, the modified alginate showed better performance (i.e., an elution over 88%) than the native alginate (i.e., an elution below 10%), indicating that the functional group modification was effective in reducing the affinity to cesium ions. Therefore, the separation of cesium from the barium using the modified alginate is expected to be an additional option to produce 131Cs.

Preliminary Survey for Setting Evaluation Standards of Wood Pellet Safety (목재펠릿의 안전성평가 기준 마련을 위한 예비 조사)

  • Yang, In;Kang, Sung-Mo;Kim, Young Hun;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.541-552
    • /
    • 2018
  • As the use of wood pellets increases, there is an increasing interest in the safety of the wood pellets themselves to avoid physical and chemical damage to people and the environment. This study investigated the contents of nitrogen, sulfur, chlorine, arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc, and cesium in wood pellets distributed in Korea as a preliminary survey for establishing safety evaluation standards for wood pellets. Nitrogen, sulfur, chlorine, and heavy metal contents of wood pellets produced in Korea met the specification for the 1st grade of wood pellets determined by the National Institute of Forest Science and the specification for the commercial and residential wood pellets of A1 grade determined by the ISO and the evaluation standards for wood pellet safety determined by the Korean Forest Service. However, among imported wood pellets, some wood pellets contained nitrogen, sulfur, chlorine, and heavy metal exceeding the safety evaluation standards. Cesium radioactivity was not detected in domestic wood pellets. Cesium radioactivity was detected from wood pellets imported from Japan, but it was below the limits specified in the wood pellet safety evaluation standards. In conclusion, by establishing safety standards for wood pellets, we believe that safe wood pellets will be used.

The Study on the Fixation of Cs-137 Radionuclide in Clinoptillolite - The Fixation of Cesium in Clinoptillolite - (Clinoptillolite에 의(依)한 Cs-137 핵종(核種) 흡착(吸着)에 관(關)한 연구(硏究))

  • Lee, Sang-Hoon;Sung, Nak-June;Park, Won-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1978
  • Investigation is carried out that low-level liquid radioactive wastes which is consisted of long half-life nuclides such as cesium can be treated by Korean clinoptillolite as a kind of zeolites. Column operation using a activated clinoptillolite shows good results in terms of break-through curves and comparing to clinoptillolite classified at WARD in U.S, Korean clinoptillolite shows a tailing phenomena longer than that of WARD. The fixation quantity of radioactivity in Korea clinoptillolite is to be about $75{\mu}Ci/100g$ using a $2.5{\times}10^{-3}{\mu}Ci/ml$ solution.

  • PDF

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

In Vitro Experiment to Evaluate 137Cs Dissolution in the Digestion Process of Mushrooms

  • Nishiono, Kanoko;Yamanishi, Hirokuni
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.154-162
    • /
    • 2020
  • Background: Several studies have reported that wild mushrooms contain high amounts of radioactive cesium (137Cs). After the Fukushima Daiichi Nuclear Power Plant Accident, a significantly high concentration of 137Cs has been detected in wild mushrooms, and their consumption may be the cause of the chronic internal exposure of local consumers to radioactivity. Therefore, an accurate evaluation of the internal radioactivity resulting from mushroom ingestion is needed. Materials and Methods: The 137Cs elution rate through the cooking and digestion stages was evaluated using in vitro experiments. The edible mushroom Pleurotus djamor was taken as a sample for the experiments. The mushrooms were cultivated onto solid media containing 137Cs. We evaluated the internal dose based on the actual conditions using the elution rate data. For various cooking methods, the results were compared with those of other wild edible mushrooms. Results and Discussion: From the elution experiment through cooking, we proved that 25%-55% of the 137Cs in the mushrooms was released during soaking, boiling, or frying. The results of a simulated digestion experiment after cooking revealed that almost all the 137Cs in the ingested mushrooms eluted in the digestive juice, regardless of the cooking method. The committed effective dose was reduced by 20%-75% when considering the dissolution through the cooking process. Conclusion: We found that cooking lowers 137Cs concentration in mushrooms, therefore reducing the amount of radioactivity intake. Besides, since there were differences between mushroom types, we demonstrated that the internal exposure dose should be evaluated in detail considering the release of 137Cs during the cooking stages.

Thermodynamic Evaluations of Cesium Capturing Reaction in Ceramic Microcell UO2 Pellet for Accident-tolerant Fuel (사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가)

  • Jeon, Sang-Chae;Kim, Keon Sik;Kim, Dong-Joo;Kim, Dong Seok;Kim, Jong Hun;Yoon, Jihae;Yang, Jae Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have $UO_2$ grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the $UO_2$ pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (${\Delta}G_{Cs}$) and oxygen potential (${\Delta}G_{O_2}$) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture.

Removal of Cesium and Separation of Strontium for the Analysis of the Leachate of Spent Fuel (사용후핵연료 침출액 분석을 위한 세슘의 제거 및 스트론튬의 분리)

  • Kim, Seung Soo;Chun, Kwan Sik;Kang, Chul Hyung
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The selective removal of cesium by ammonium molybdophosphate (AMP) was studied in order to reduce an interference by high radioactivity of cesium on the determination of low radioactive elements in leachate of spent fuel. The removal of Cs, U, Ce, La, Co Ca, Na Sr and K was investigated for the leachate and the bentonite in contact with a spent fuel. More than 90% of cesium was removed by AMP and Ca, Na, Co and Sr was remained in 0.1 M $HNO_3$. However, three valence elements such as La and Ce were also removed by AMP. Though a little of potassium of the bentonite components was adsorbed on AMP, the potassium in the bentonite solution diluted to its concentration in a real sample would not affect the capacity of AMP greatly. From another experiment for the separation of strontium as a leaching indicator of spent fuel, the recovery of strontium in 8.0 M $HNO_3$ solution by using Sr-resin (Eichrom, P/N SR-B50-A) was more than 95% by eluting with 0.05 M $HNO_3$.

Contribution of production and loss terms of fission products on in-containment activity under severe accident condition for VVER-1000

  • Jafarikia, S.;Feghhi, S.A.H.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.125-137
    • /
    • 2019
  • The purpose of this paper is to study the source term behavior after severe accidents by using a semi-kinetic model for simulation and calculation of in-containment activity. The reactor containment specification and the safety features of the containment under different accident conditions play a great role in evaluating the in-containment activity. Assuming in-vessel and instantaneous release of radioactivity into the containment, the behavior of in-containment isotopic activity is studied for noble gasses (Kr and Xe) and the more volatile elements of iodine, cesium, and aerosols such as Te, Rb and Sr as illustrative examples of source term release under LOCA conditions. The results of the activity removal mechanisms indicates that the impact of volumetric leakage rate for noble gasses is important during the accident, while the influence of deposition on the containment surfaces for cesium, mainly iodine isotopes and aerosol has the largest contribution in removal of activity during evolution of the accident.

Environmental Radioactivity Prior to the Kori Nuclear Power Plant Operation

  • Pak, Chan-Kirl;Yang, Kyung-Rin
    • Nuclear Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 1978
  • The present paper deals with the measurement of the environmental radioactivity at the Kori nuclear Power Plant site area for the Period of six years from December 1970 to December 1976. Gross alpha activity was measured in samples of airborne particulate. Gross beta measurement was performed on soil, water, airborne perticulate, pine needle, precipitation, fallout (gummed acetate paper) and various foodstuffs. Radioactivities of strontium-90 and cesium-l37 were determined by means of radiochemical analyses in samples of spinach, cabbage, barley, rice in terrestrial food, sea eel, shell fish, dulse, green laver in marine product and milk, and of fallout (cloumn), Furthermore, tritum was also analyzed in water sample of well, stream and sea by electrical enrichment.

  • PDF

Environmental Radioactivity at Ko-ri Nuclear Power Plant Site December 1970-November 1972

  • Yang, Kyung-Rin;Pak, Chan-Kirl
    • Nuclear Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.240-248
    • /
    • 1973
  • The present report concerns measurement of environmental radioactivity in the Ko-ri nuclear power plant site area. Gross beta measurements have been performed on soil, water, pine needle, and fallout samples collected during the period of December 1970-November 1972. Radioactivities of Strontium-90 and Cesium-137 have been measured by radiochemical analyses on samples of vegetables and marine products collected in 1972. Apparent seasonal variations and overall decrease by the year was also observed from the results of soil, pine needle, and fallout sample measurements respectively.

  • PDF