• Title/Summary/Keyword: cerevisiae

Search Result 1,657, Processing Time 0.03 seconds

Cell Surface Display of Arylsulfatase Gene from Pseudoalteromonas carageenovora in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Pseudoalteromonas carageenovora 유래 Arylsulfatase 유전자의 표층 발현)

  • Cho, Eun-Soo;Kim, Hyun-Jin;Jung, So-A;Kim, Jeong-Hwan;Kim, Yeon-Hee;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.355-360
    • /
    • 2009
  • In this study, the arylsulfatase gene (astA, 984 bp ORF) from Pseudoalteromonas carrageenovora genome was expressed on the cell surface of S. cerevisiae by fusing with Aga2p linked to the membrane anchored protein, Aga1p. The constructed plasmid, pCTAST (7.1 kb), was introduced to S. cerevisiae EBY100 cell, and yeast transformants on YPDG plate showed the hydrolyzing activity for 4-methylumbelliferyl-sulfate and p-nitrophenyl-sulfate. When S. cerevisiae EBY100/pCTAST was grown on YPDG medium, the arylsulfatase activity of cell pellet reached about 1.2 unit/mL, whereas no extracellular arylsulfatase activity was detected. The DNA ladder in agarose prepared from agar by this recombinant arylsulfatase showed similar resolution and migration patterns with a commercial agarose. This results revealed that arylsulfatase expressed on the cell surface of S. cerevisiae could be applicable to the economic production of electrophoretic-grade agarose.

Secretory Overexpression and Characterization of Human Procarboxypeptidase B from Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Human Procarboxypeptidase B의 과발현 분비생산과 그 특성)

  • Kim, Mi-Jung;Kim, Mi-Jin;Lee, Jae-Hyung;Kim, Yeon-Hee;Seo, Jin-So;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.49-54
    • /
    • 2008
  • The gene encoding human pancreatic pro-carboxypeptidase B (CPB) was cloned and fused to Saccharomyces cerevisiae mating factor alpha-1 secretion signal $(MF{\alpha}1)$, in which the transcription of $MF{\alpha}1$-pro-CPB was under the control of GAL10 promoter. The constructed plasmid $pY{\alpha}$-hproCPB(7.72 kb) was transformed into S. cerevisiae 2805. The recombinant human pro-CPB (hproCPB) was successfully expressed in S. cerevisiae after induction of galactose, and could be secreted into the culture medium. By analyses of SDS-PAGE and western blotting, the molecular weight of the purified hproCPB was estimated to be a 45.9kDa. The activity of extracellular hCPB after removal of pro-region by trypsin treatment reached about 10.16 unit/ml at batch culture of S. cerevisiae $2805/pY{\alpha}$-hproCPB for 60 h. Also, the Km value of partially purified recombinant hCPB is about 0.43 mM.

Overexpression and Characterization of Bovine Pancreatic Deoxyribonuclease I in Saccharomyces cerevisiae and Pichia pastoris (Saccharomyces cerevisiae와 Pichia pastoris에서 Bovine Pancreatic Deoxyribonuclease I의 과발현과 특성)

  • Cho, Eun-Soo;Kim, Jeong-Hwan;Yoon, Ki-Hong;Kim, Yeon-Hee;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.348-355
    • /
    • 2012
  • In the present study, we investigated the overexpression and characterization of bovine pancreatic (bp)- DNase I in Saccharomyces cerevisiae and Pichia pastoris. The bp-DNase I gene was fused in frame with the GAL10 promoter, $MF{\alpha}$, and GAL7 terminator sequences, resulting in the plasmid, pGAL-$MF{\alpha}$-DNaseI (6.4 kb). Also, the bp-DNase I gene was fused in frame with the AOX1 promoter, $MF{\alpha}$, and AOX1 terminator sequences, resulting in the plasmid, pPEXI (8.8 kb). The recombinant plasmids, pGAL-$MF{\alpha}$-DNaseI and pPEXI were introduced into S. cerevisiae and P. pastoris host cells, respectively. When the transformed yeast cells were cultured at $30^{\circ}C$ for 48 h in galactose or methanol medium, bp-DNase I was overexpressed and the most of activity was found in the extracellular fraction. P. pastoris transformant activity showed 45.5 unit/mL in the culture medium at 48 h cultivation, whereas S. cerevisiae transformant revealed 37.7 unit/mL in the extracellular fraction at 48 h cultivation. The enzymatic characteristics, such as DNA cleavage and half life were investigated. Treatment of the recombinant DNase I from P. pastoris induced degradation of the calf thymus DNA within 1 minute, and this DNA degradation rate was higher than that of commercial bp-DNase I (SIGMA) and the recombinant DNase I from S. cerevisiae.

Breeding of Yeast Strain with Starch Utilizing and Alcohol Fermenting Ability by Protoplast Fusion (전분분해활성과 알코올 발효능을 보유한 효모의 육종)

  • Ju, Min-No;Hong, Sung-Wook;Kim, Kwan-Tae;Yum, Sung-Kwan;Kim, Gye-Won;Chung, Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • The fusants which contain starch utilizing ability and alcohol fermenting ability were developed by protoplast fusion of Saccharomyces cerevisiae KOY-1 and Saccharomyces diastaticus KCTC 1804. Sacharomyces cerevisiae KH-12 was obtained by haploid induction from Saccharomyces cerevisiae KOY-1. The auxotropic mutants of yeast were obtained by using an ethylmethane sulfonate (EMS). The frequency of protoplast formation in Saccharomyces cerevisiae KOY-1 $(Met^-)$ and Saccharomyces diastaticus KCTC 1804 $(Trp^-)$ were 90.5% and 97.7%, respectively. The frequency of fusant formation was $1.79{\times}10^{-4 }$ for the regenerated protoplast and the 1,000 fusants were obtained. Fusant FA 776 was selected as a potential yeast which contain an alcohol fermenting ability in the starch medium. The genetic stability was 4.64% for 10 passages of generation. Fusant FA 776 produced 13mg/ml of alcohol in 24% starch medium and showed 1.86-fold higher alcohol fermenting ability than Saccharomyces diastaticus KCTC 1804.

Characteristics of Rice Sourdough for Jeungpyun Prepared by Mixed Culture of Saccharomyces cerevisiae and Leuconostoc mesenteroides Strains (Saccharomyces cerevisiae와 Leuconostoc mesenteroides 균주의 혼합배양으로 제조한 증편용 Rice Sourdough의 특성)

  • Oh, Chul-Hwan;In, Man-Jin;Oh, Nam-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.5
    • /
    • pp.660-665
    • /
    • 2008
  • The aim of this work was to investigate the microbiological and physicochemical properties of the rice sourdough for Jeungpyun prepared by mixed culture of Saccharomyces cerevisiae (S. cerevisiae) and Leuconostoc mesenteroides (L. mesenteroides) strains. The rice sourdough was fermented with S. cerevisiae and L. mesenteroides strains in rice dough for 24 hours at $30^{\circ}C$. Growth of L. mesenteroides strain was decreased after inoculation, however, it increased again after 18 hours of dough fermentation, and the growth of S. cerevisiae showed a typical growth pattern. Also, total aerobic microorganisms counts in rice sourdough were decreased due to the produced organic acids and ethanol during dough fermentation. These products led to a favorable fermentative quotient (FQ; molar ratio between lactic to acetic acid) value of $1.9{\sim}3.2$ and more stable fermentation for rice sourdough formation. The expansion ratio and viscosity were considerably increased by mixed cultivation of S. cerevisiae and L. mesenteroides strains. Addition of the brown rice at 10% (w/w) to dough preparation increased the relative expansion ratio to the highest value.

Characterization of Yakju Prepared with Yeasts from Fruits 2. Quality Characteristics of Yakju during Fermentation (효모에 따른 약주의 품질특성 2. 발효과정중 약주의 품질특성)

  • 양지영;신귀례;김병철;김용두
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.801-804
    • /
    • 1999
  • Quality characteristics of yakju prepared by different yeast strains such as Saccharomyces cerevisiae S 2, Saccharomyces cerevisiae S 6 and Saccharomyces cerevisiae IFO 1950 were investigated during fermentation. The pH in all kinds of yakju was gradually decreased until 6 days and then it was constant. In stage of fermentation, acidity of yakju made of Saccharomyces cerevisiae S 6 was higher than others. At the beginning stage of fermentation, ethanol contents were in the range of 0~2% increased to 9.5~11.5% after 10 days. Yakju made of Saccharomyces cerevisiae S-2 showed higher ethanol contents than others. Free sugars in yakju were found to be glucose and maltose. The contents of free sugars were decreased until 6 days and they were not detected. The content of ethanol in yakju showed the highest value at the 6th day and those of yakju A, B and C were 11.9, 9.5, 10.9%, respectively. Main organic acids in yakju were citric acid and lactic acid. The content of citric acid in yakju B was higher than others.

  • PDF

Comparison of Ethanol Fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 from Starch Feedstocks (전분 기질에 대한 Saccharomyces cerevisiae CHY1077과 Zymomonas mobilis CHZ2501의 에탄올 발효 비교)

  • Choi, Giwook;Kang, Hyunwoo;Kim, Youngran;Chung, Bongwoo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.977-982
    • /
    • 2008
  • The production of ethanol by microbial fermentation as an alternative energy source has been of interest because of increasing oil price. Saccharomyces cerevisiae and Zymomonas mobilis are two of the most widely used ethanol producers. In this study, characteristics of ethanol fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 was compared. Brown rice, naked barley, and cassava were selected as representatives of the starch-based raw materials commercially available for ethanol production. The volumetric ethanol productivities by Saccharomyces cerevisiae from brown rice, naked barley and cassava were $0.68g/l{\cdot}h$, $1.03g/l{\cdot}h$ and $1.28g/l{\cdot}h$ respectively. But for the Zymomonas mobilis, $2.19g/l{\cdot}h$(brown rice), $2.60g/l{\cdot}h$(naked barley) and $3.12g/l{\cdot}h$(cassava) were obtained. Zymomonas mobilis was more efficient strain for ethanol production than S. cerevisiae.

Expression System for Optimal Production of Xylitol Dehydrogenase (XYL2) in Saccharomyces cerevisiae (출아효모에서 xylitol dehydrogenase (XYL2)의 최적 생산을 위한 발현 시스템 구축)

  • Jung, Hoe-Myung;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1403-1409
    • /
    • 2017
  • In this study, the xylitol dehydrogenase (XYL2) gene was expressed in Saccharomyces cerevisiae as a host cell for ease of use in the degradation of lignocellulosic biomass (xylose). To select suitable expression systems for the S.XYL2 gene from S. cerevisiae and the P.XYL2 gene from Pichia stipitis, $pGMF{\alpha}-S.XYL2$, $pGMF{\alpha}-P.XYL2$, $pAMF{\alpha}-S.XYL2$ and $pAMF{\alpha}-P.XYL2$ plasmids with the GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter to allow secretion. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$ strain and the xylitol dehydrogenase activity was investigated. The GAL10 promoter proved more suitable than the ADH1 promoter for expression of the XYL2 gene, and the xylitol dehydrogenase activity from P. stipitis was twice that from S. cerevisiae. The xylitol dehydrogenase showed $NAD^+$-dependent activity and about 77% of the recombinant xylitol dehydrogenase was secreted into the periplasmic space of the $SEY2102{\Delta}trp1/pGMF{\alpha}-P.XYL2$ strain. The xylitol dehydrogenase activity was increased by up to 41% when a glucose/xylose mixture was supplied as a carbon source, rather than glucose alone. The expression system and culture conditions optimized in this study resulted in large amounts of xylitol dehydrogenase using S. cerevisiae as the host strain, indicating the potential of this expression system for use in bioethanol production and industrial applications.

The Antioxidant and Skin-whitening Effects of Saccharomyces cerevisiae FT4-4 Isolated from Berries Grown in Sunchang (화장품 소재로서 순창 베리류 유래 Sacchromyces cerevisiae FT4-4의 항산화 활성 및 미백 효과)

  • Seo, Ji won;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.175-182
    • /
    • 2021
  • Saccharomyces lysate has the well-known function of soothing the skin in various ways: it is an anti-irritant and can treat skin care conditions, such as skin whitening and antioxidative activity. However, data on the safety for use of Saccharomyces lysate in cosmetics and skin care products are still limited. To design a new cosmetic material with antioxidant and skin-whitening effects, 80 yeast strains were isolated from berries grown in Sunchang. Among the isolates, the FT4-4 strain, which exhibited superior biological activities, was selected for further experiments. The FT4-4 strain was identified as Saccharomyces cerevisiae by 18S rRNA gene sequencing analysis. S. cerevisiae FT4-4 showed higher DPPH radical-scavenging (51.41%), superoxide dismutase (62.23%), and tyrosinase inhibition (64.75%) activities. The highest yield of biomass (3.16 g/l) and maximum growth rate of S. cerevisiae FT4-4 were observed within 16 h. Furthermore, the cytotoxicity potential of S. cerevisiae FT4-4 on B16F10 melanoma cells was measured by an MTT assay, and the results indicated that S. cerevisiae FT4-4 had a capacity to inhibit melanin up to 72.02% at an initial 10 mg/ml concentration. These results suggest that S. cerevisiae FT4-4 could be a promising candidate as a multi-functional material for application in the cosmetic industry, especially because of its antioxidant and skin-whitening effects.

Isolation and Identification of the High-Glutathione Producing Saccharomyces cerevisiae FF-8 from Korean Traditional Rice Wine and Optimal Producing Conditions (전통 발효주로부터 glutathione 고함유 효모 Saccharomyces cerevisiae FF-8의 분리.동정 및 최적 생산조건)

  • Park, Jin-Chul;Ok, Min;Cha, Jae-Young;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.348-352
    • /
    • 2003
  • In this study, strain of high-producing intracellular glutathione was isolated from Korean traditional rice wine. The isolated strain was identified as Saccharomyces cerevisiae based on the morphological, physiological and biochemical characteristics, and was designated as FF-8. The optimal condition for glutathione production by Saccharomyces cerevisiae FF-8 was obtained after cultivation with shaking for 72 hours in the YM medium. The optimal temperature, shaking rate and initial pH for the glutathione production were $30^{\circ}C$, 100 rpm and pH 6.0, respectively. The dry cell weight and glutathione concentration produced by Saccharomyces cerevisiae FF-8 were 5.2 g/l and 72.0 mg/l, respectively, under the optimal culture condition.