DOI QR코드

DOI QR Code

Overexpression and Characterization of Bovine Pancreatic Deoxyribonuclease I in Saccharomyces cerevisiae and Pichia pastoris

Saccharomyces cerevisiae와 Pichia pastoris에서 Bovine Pancreatic Deoxyribonuclease I의 과발현과 특성

  • Cho, Eun-Soo (Department of Biomaterial Control (BK21 program), Dong-Eui University) ;
  • Kim, Jeong-Hwan (Department of Biomaterial Control (BK21 program), Dong-Eui University) ;
  • Yoon, Ki-Hong (School of Food Science & Biotechnology, Woosong University) ;
  • Kim, Yeon-Hee (Department of Biomaterial Control (BK21 program), Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control (BK21 program), Dong-Eui University)
  • 조은수 (동의대학교 바이오물질제어학과(BK21)) ;
  • 김정환 (동의대학교 바이오물질제어학과(BK21)) ;
  • 윤기홍 (우송대학교 식품생물과학과) ;
  • 김연희 (동의대학교 바이오물질제어학과(BK21)) ;
  • 남수완 (동의대학교 바이오물질제어학과(BK21))
  • Received : 2012.11.02
  • Accepted : 2012.12.07
  • Published : 2012.12.28

Abstract

In the present study, we investigated the overexpression and characterization of bovine pancreatic (bp)- DNase I in Saccharomyces cerevisiae and Pichia pastoris. The bp-DNase I gene was fused in frame with the GAL10 promoter, $MF{\alpha}$, and GAL7 terminator sequences, resulting in the plasmid, pGAL-$MF{\alpha}$-DNaseI (6.4 kb). Also, the bp-DNase I gene was fused in frame with the AOX1 promoter, $MF{\alpha}$, and AOX1 terminator sequences, resulting in the plasmid, pPEXI (8.8 kb). The recombinant plasmids, pGAL-$MF{\alpha}$-DNaseI and pPEXI were introduced into S. cerevisiae and P. pastoris host cells, respectively. When the transformed yeast cells were cultured at $30^{\circ}C$ for 48 h in galactose or methanol medium, bp-DNase I was overexpressed and the most of activity was found in the extracellular fraction. P. pastoris transformant activity showed 45.5 unit/mL in the culture medium at 48 h cultivation, whereas S. cerevisiae transformant revealed 37.7 unit/mL in the extracellular fraction at 48 h cultivation. The enzymatic characteristics, such as DNA cleavage and half life were investigated. Treatment of the recombinant DNase I from P. pastoris induced degradation of the calf thymus DNA within 1 minute, and this DNA degradation rate was higher than that of commercial bp-DNase I (SIGMA) and the recombinant DNase I from S. cerevisiae.

본 연구에서는 S. cerevisiae와 P. pastoris에서 bovine pancreatic (bp-) DNase I의 과발현과 재조합 DNase I의 특성을 조사하였다. bp-DNase I 유전자는 GAL10 promoter, $MF{\alpha}$, GAL7 terminator 사이에 삽입하여 재조합 plasmid인 pGAL-$MF{\alpha}$-DNaseI (6.4 kb)를 구축하였다. 그리고 bp-DNase I 유전자를 AOX1 promoter, $MF{\alpha}$, AOX1 terminator 에 삽입하여 재조합 plasmid인 pPEXI (8.8 kb)를 구축하였다. 재조합 plasmid인 pGAL-$MF{\alpha}$-DNaseI과 pPEXI를 각각 S. cerevisiae와 P. pastoris 숙주세포에 형질전환시켰다. 형질전환된 효모세포들을 galactose와 methanol 배지에서 $30^{\circ}C$, 48시간 배양하면 bp-DNase I은 대부분이 배양 상등액으로 과발현되었다. P. pastoris 형질전환체는 배양 상등액에서 45.5 unit/mL의 DNase I 활성을 보였으며, 반면에 S. cerevisiae 형질전환체는 37.7 unit/mL의 DNase I 활성을 보였다. 또한 DNA 분해 특성을 조사한 결과, P. pastoris 재조합 DNase I으로 기질 DNA(calf thymus)를 처리하였을 때 1분 이내 DNA가 분해되는 것을 확인할 수 있었으며 이는 상업용 bp-DNase I과 S. cerevisiae 재조합 DNase I으로 처리했을 때보다 빠른 분해 패턴을 보였다.

Keywords

References

  1. Bernardi, G. 1971. Spleen acid deoxyribonuclease. The Enzymes. Boyer, P. D. (ed.), pp. 271-287.
  2. Broker, M., O. Bauml, A. Gottig, J. Ochs, M. Bodenbenner, and E. Amann. 1991. Expression of the human blood coagulation protein factor XIIIa in Saccharomyces cerevisiae: Dependence of the expression levels from host-vector system and medium condition. Appl. Microbiol. Biotechnol. 34: 756-764.
  3. Castanon, M. J., W. Spevak, G. R. Adolf, E. Chlebowicz- Sledziewska, and A. Sledziewski. 1988. Cloning of human lysozyme gene and expression in the yeast Saccharomyces cerevisiae. Gene 66: 223-234. https://doi.org/10.1016/0378-1119(88)90359-9
  4. Chen, C. Y., S. C. Lu, and T. H. Liao. 1998. Cloning, sequencing and expression of a cDNA encoding bovine pancreatic deoxyribonuclease I in Escherichia coli: purification and characterization of the recombinant enzyme. Gene 206: 181-184. https://doi.org/10.1016/S0378-1119(97)00582-9
  5. Chung, B. H., B. M. Kim, S. K. Rhee, Y. H. Park, and S. W. Nam. 1995. Effect of galactose feeding strategy on heterologous human lipocortin-I production in the fed-batch culture of Saccharomyces cerevisiae controlled by the GAL 10 promoter. J. Microbiol. Biotechnol. 5: 224-228.
  6. Eckart, M. R. and C. M. Bussineau. 1996. Quality and authenticity of heterologous proteins synthesized in yeast. Curr. Opin. Biotechnol. 7: 525-530. https://doi.org/10.1016/S0958-1669(96)80056-5
  7. Faber, K. N., W. Harder, G. Ab, and M. Veenhuis. 1995. Methylotrophic yeasts as factories for the production of foreign proteins. Yeast 11: 1331-1334. https://doi.org/10.1002/yea.320111402
  8. Hollenberg, C. P. and G. Gellissen. 1997. Production of recombinant proteins by methylotrophic yeast. Curr. Opin. Biotechnol. 8: 554-560. https://doi.org/10.1016/S0958-1669(97)80028-6
  9. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168.
  10. Kang, L. X. Chen, C. Zhai, and L. Ma. 2012. Synthesis and high expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris GS115. J. Microbiol. Biotechnol. 22: 1202-1207. https://doi.org/10.4014/jmb.1112.12026
  11. Kawamura, M., H. Nakai, T. Uchiyama, Y. Takai, and M. Sawada. 1997. Synthesis of methyl 6-O-$\beta$-inulotriosyl-$\alpha$-Dglucopyranoside by intermolecular transglycosylation reaction of cycloinulo-oligosaccharide fructanotransferase. Carbohydr. Res. 297: 187-190. https://doi.org/10.1016/S0008-6215(96)00264-9
  12. Linn, S. M. 1982. Tabulation of some well-characterized enzymes with deoxyribonuclease activity. Nuclease. Cold Spring Harbor Laboratory Press, New York, pp. 341-357.
  13. Moore, S. 1981. Pancreatic DNase. The Enzymes Vol. 7, 3rded., ed. Boyer, P. D., Academic Press, New York, pp. 281-296.
  14. Nishikawa, A. and S. Mizuno. 2001. The efficiency of Nlinked glycosylation of bovine DNase I depends on the Asn- Xaa-Ser/Thr sequence and the tissue of origin. Biochem. J. 355: 245-248. https://doi.org/10.1042/0264-6021:3550245
  15. Price, V., D. Mochizuki, C. J. March, D. Cosman, M. C. Deeley, R. Klinke, W. Clevenger, S. Gillis, P. Baker, and D. Urdal. 1987. Expression, purification and characterization of recombinant marine granulocyte-macrophage colony-stimulating factor and bovine interleukin-2 from yeast. Gene 55: 287-293. https://doi.org/10.1016/0378-1119(87)90288-5
  16. Romanos, M. A., C. A. Scorer, and J. J. Clare. 1992. Foreign gene expression in yeast: a review. Yeast 8: 423-488. https://doi.org/10.1002/yea.320080602
  17. Schultz, L. D., H. Z. Markus, K. J. Hofmann, D. L. Montgomery, C. T. Dunwiddie, P. J. Kniskern, R. B. Freedman, R. W. Ellis, and M. F. Tuite. 1994. Using molecular genetics to improve the production of recombinant proteins by the yeast Saccharomyces cerevisiae. Ann. NY Acad. Sci. 721: 148-157. https://doi.org/10.1111/j.1749-6632.1994.tb47387.x
  18. Scotti, P. A., M. Praestegaard, R. Chambert, and M. F. Petit- Glatron. 1996. The targeting of Bacillus subtilis levansucrase in yeast is correlated to both the hydrophobicity of the signal peptide and the net charge of the N-terminus mature part. Yeast 12: 953-963. https://doi.org/10.1002/(SICI)1097-0061(199608)12:10<953::AID-YEA998>3.0.CO;2-#
  19. Shen, S., G. Sulter, T. W. Jeffries, and J. M. Cregg. 1998. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216: 93-102. https://doi.org/10.1016/S0378-1119(98)00315-1
  20. Shin, D. H., J. B. Kim, B. W. Kim, S. W. Nam, J. W. Shin, D. K. Chung, and C. S. Jeong. 1998. Expression and secretion of Trichoderma endoglucanase in Saccharomyces cerevisiae. Kor. J. Appl. Microbiol. Biotechnol. 26: 406-412.
  21. Shrestha, B., K. Blondeau, W. F. Stevens, and F. L. Hegarat. 2004. Expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris: purification and characterization. Protein Expr. Purif. 38: 196-204. https://doi.org/10.1016/j.pep.2004.08.012
  22. Shuster, J. R. 1991. Gene expression in yeast: protein secretion. Curr. Opin. Biotechnol. 2: 685-690. https://doi.org/10.1016/0958-1669(91)90035-4
  23. Takeshita, H., K. Mogi, T. Yasuda, T. Nakajima, Y. Nakashima, S. Mori, T. Hoshino, and K. Kishi. 2000. Mammalian deoxyribonuclease I are classified into three types: pancreas, parotid, and pancreas-parotid (mixed), based on differences in their tissue concentrations. Biochem. Biophys. Res.Commun. 269: 481-484. https://doi.org/10.1006/bbrc.2000.2300
  24. Vorisek, J. 1994. Activity of Kex2 dibasic endoprotease is localized throughout the secretory pathway in Saccharomyces cerevisiae. An ultracytochemical study. Eur. J. cell Biol. 63: 130-139.
  25. Waterham, H. R., M. E. Digan, P. J. Koutz, S. V. Lair, and J. M. Cregg. 1997. Isolation of the Pichia pastoris glyceraldehyde- 3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186: 37-44. https://doi.org/10.1016/S0378-1119(96)00675-0
  26. Yang, H., L. Liu, H.D. Shin, R.R. Chen, J. Li, G. Du, and J. Chen. 2012. Comparative analysis of heterologous expression, biochemical characterization and optimal production of an alkaline $\alpha$-amylase from alkaliphilic Alkalimonas amylolytica in Escherichia coli and Pichia pastoris. Biotechnol. Prog. doi: 10.1002/btpr.1657.