• Title/Summary/Keyword: cerebral cortex

Search Result 436, Processing Time 0.029 seconds

Effects of Daeseungkitang on Cerebral Infarct of MCAO Rats (대승기탕(大承氣湯)의 사하작용이 중대뇌동맥 폐쇄 흰쥐의 뇌경색에 미치는 영향)

  • Lee, Kyu-Sik;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.7-14
    • /
    • 2011
  • Object : This study evaluated the effects of Daeseungkitang(DSK) on cerebral infarct of middle cerebral artery occlusion(MCAO). Method : Sprague-Dawley rats are used for observing to induce cerebral infraction closing its middle cerebral artery temporarily and take DSK by mouth the next 5 days, observe the amount of feces and urine. It is investigated the correlation between them after examining neurological score. Results : It is resulted the below. On the 2nd day of taking DSK, the total amount of feces of the cerebral infarct rats is increased significantly. After taking DSK, the urine volume of the cerebral infarct rats does not change at all. Taking DSK significantly improves neurological score of the cerebral infarct rats. There is a significant correlation between total amount of feces of the cerebral infarct rats and neurological score, otherwise there is no significant correlation between total amount of feces and neurological score which is taken DSK. By taking DSK, the volume of cerebral infarction does not decrease significantly. Taking DSK restrains the expression of iNOS in the cerebral cortex and striatum of the cerebral infarct rats. Taking DSK restrains the expression of MMP-9 in the cerebral cortex of the cerebral infarct rats. Taking DSK restrains the edema of astrocytes of the positive reaction of GFAP in the cerebral cortex of the cerebral infarct rats. Conclusion : According to above results, Daeseungkitang(DSK) is assumed that showing reaction of protecting neuron cell by restraint brain tissue edema thorough controlling water balance.

The Regulatory Mechanism of Cerebral Blood How of Adenosine A2 Receptor Agonist in the Rats

  • Kang, Hyung-Kil;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.68-73
    • /
    • 2004
  • This study was performed to investigate the regulatory mechanism of cerebral blood How of adenosine $A_2$ receptor agonist in the rats, and to define whether its mechanism is mediated by nitric oxide (NO), adenylate cyclase and guanylate cyclase. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebal cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine $A_2$ receptor agonist [5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA; 4 umol/l)] increased cerebral blood flow. This effect of CPCA (4 umol/l) was blocked by pretreatment with NO synthase inhibitor [$N^G$-nitro-L-argine methylester (L-NAME; 140 umol/l)] and adenylate cyclase inhibitor [MDL-12,330 (20 umol/l)]. But the effect of CPCA (4 umol/l) was not blocked by pretreatment with guanylate cyclase inhibitor [LY-83,583 (10 umol/l)]. These results suggest that adenosine $A_2$ receptor increases cerebral blood How. It seems that this action of adenosine $A_2$ receptor is mediated via the NO and the activation of adenylate cyclase in the cerebral cortex of the rats.

Neuroprotective Effect of HyulBuChookAu-Tang on Focal Cerebral Ischemia of the Rats

  • Cho Eun-Hee;Kim Young-Gyun;Kwon Jung-Nam
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.70-85
    • /
    • 2006
  • Objectives; This study examined the neuroprotective effect of Hyulbuchookautang (血府逐瘀湯, HBCAT)against neural damage following focal cerebral infarction. Methods : Sprague-Dawley Rats were induced with focal cerebral infarction by temporal middle cerebral artery occlusion (MCAO). The rats were divided into 2 groups. We treated extract of HBCAT to one group after operation (sample group), and the other group wasn't treated after operation (control group). We observed neurological scores and TIC-stained infarct area, total infarct volume in brain sections and Bax-positive neurons, HSP70- positive neurons in brain regions. Results : HBCAT treatment at 3 days after MCAO reduced neurological scores induced by MCAO. HBCAT treatment at 5 days after MCAO reduced TTC-stained infarct area in brain sections induced by MCAO. HBCAT treatment at 5 days after MCAO reduced total infarct volume in brain sections induced by MCAO. HBCAT treatment after MCAO reduced Bax-positive neurons in cortex infarct core and cortex infarct penumbra and caudo-putamen of brain regions induced by MCAO. HBCAT treatment after MCAO reduced HSP70- positive neurons in cortex infarct penumbra of brain regions induced by MCAO. Conclusions : These results suggest that HBCAT has a neuroprotective effect against focal cerebral ischemia.

  • PDF

Effect of Daeseungki-tang on Apoptotic Neuronal Cell Death of MCAO Rats (대승기탕(大承氣湯)이 중대뇌동맥 폐쇄 흰쥐의 신경세포 자연사에 미치는 영향)

  • Choi, Eun-Bin;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.403-409
    • /
    • 2008
  • In Oriental medicine daeseungki-tang is one of the prescription that is used clinically for constipation of paralytics. The objective of the study was to observe the effect of daeseungki-tang on apoptotic neuronal cell death. In the present study, middle cerebral artery occlusion(MCAO) rats were treated with daeseungi-tang for 5 days and the edema percentage of cerebral hemisphere of MCAO rats were investigated primary. Secondary, appearances of Bax, Bcl-2,-factors that is related to apoptotic neuronal cell death - and HSP72 in the brain of MCAO rats were investigated via immunohistochemistry. Daeseungki-tang significantly decreased edema percentage of the cerebral hemisphere of MCAO rats. Daeseungki-tang significantly decreased Bax positive cells, but did not change the apperances of Bcl-2 positive cells in the penumbra of the cerebral cortex and the caudoputamen of MCAO rats. Daeseungki-tang significantly decreased HSP72 positive cells in the penumbra of the cerebral cortex, but not in the caudoputamen of MCAO rats. Based on the present results, it can be suggested that treatment with daeseungki-tang may decrease edema of the cerebral hemisphere and restrain apoptotic neuronal cell death in the penumbra of the cerebral cortex.

A Study on the Tendency to Research of Scalp Acupunture (두침요법의 연구동향에 대한 고찰)

  • Kim, Min-Ki;Oh, Min-Seok
    • Journal of Haehwa Medicine
    • /
    • v.17 no.1
    • /
    • pp.113-127
    • /
    • 2008
  • Method : We consider some books on scalp acupuncture and reports of scalp acupuncture published in korea, and survey motor cortex stimulation. The results are as follows. Result : Scalp acupuncture was based on theory of meridian pathway and functional cerebral cortex. Scalp acupunctur was used especially for CVA(Cerebral Vascular Accident) out of cerebral diseases many time. and this acupuncture shows better effect when used with different treatments than when used singly. Motor cortex stimulation is brothers to scalp acupuncture, and give medical treatment on neuropathic pain. Conclusion : The possibility of curing illness through scalp acupuncture have been shown factually and clinically. Based upon such facts, it is regarded that further scientific research along with additional clinical approaches involving scalp acupuncture should be performed.

  • PDF

Characteristics and Pathways of the Somatosensory Evoked Field Potentials in the Rat (흰쥐에서 체감각유발장전위의 기록부위별 특성과 경로분석)

  • Shin, Hyun Chul;Park, Yong Gou;Lee, Bae Hwan;Ryou, Jae Wook;Zhao, Chun Zhi;Chung, Sang Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.7
    • /
    • pp.831-841
    • /
    • 2001
  • Objective : Somatosensory evoked potentials(SSEPs) have been used widely both experimentally and clinically to monitor the function of central nervous system and peripheral nervous system. Studies of SSEPs have reported the various recording techniques and patterns of SSEP. The previous SSEP studies used scalp recording electrodes, showed mean vector potentials which included relatively constant brainstem potentials(far-field potentials) and unstable thalamocortical pathway potentials(near-field potentials). Even in invasive SSEP recording methods, thalamocortical potentials were variable according to the kinds, depths, and distance of two electrodes. So they were regarded improper method for monitoring of upper level of brainstem. The present study was conducted to investigate the characteristics of somatosensory evoked field potentials(SSEFPs) of the cerebral cortex that evoked by hindlimb stimulation using ball electrode and the pathways of SSEFP by recording the potentials simultaneously in the cortex, VPL nucleus of thalamus, and nucleus gracilis. Methods : In the first experiment, a specially designed recording electrode was inserted into the cerebral cortex perpendicular to the cortical surface in order to recording the constant cortical field potentials and SSEFPs mapped from different areas of somatosensory cortex were analyzed. In the second experiment, SSEPs were recorded in the ipsilateral nucleus gracilis, the contralateral ventroposterolateral thalamic nucleus(VPL), and the cerebral cortex along the conduction pathway of somatosensory information. Results : In the first experiment, we could constantly obtain the SSEFPs in cerebral cortex following the transcutaneous electrical stimulation of the hind limb, and it revealed that the first large positive and following negative waves were largest at the 2mm posterior and 2mm lateral to the bregma in the contralateral somatosensory cortex. The second experiment showed that the SSEPs were conducted by way of posterior column somatosensory pathway and thalamocortical pathway and that specific patterns of the SSEPs were recorded from the nucleus gracilis, VPL, and cerebral cortex. Conclusion : The specially designed recording electrode was found to be very useful in recording the localized SSEFPs and the transcutaneous electrical stimulation using ball electrode was effective in evoking SSEPs. The characteristic shapes, latencies, and conduction velocities of each potentials are expected to be used the fundamental data for the future study of brain functions, including the hydrocephalus model, middle cerebral artery ischemia model, and so forth.

  • PDF

The Effects of EGEE on the Morphometry in the Thickness and Histogenesis of Rat Cerebral Cortex During Developmental Phase (발생기 흰쥐 대뇌 피질의 형태 구조에 미치는 Ethylene Glycol Monoethyl Ether의 영향)

  • Lee Eung-Hee;Jeong Gil-Nam;Jo Gi-Jin;Jo Un-Bock
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.975-985
    • /
    • 2004
  • This study attempts to investigate the developmental alterations of rat cerebral cortex, and the effects of EGEE on the developmental cerebral cortex in the prenatal, postnatal and adults were examined by morphological methods and H-E staining was used for the histological changes. In the case of injection of EGEE, at 14 day of fetal phase, parietal cortex was thickest $(95{\pm}12.7\;{\mu}m)$ but, it was thinner than in the control group $(102{\pm}14.0\;{\mu}m)$ and, occipital cortex $(57{\pm}10.5\;{\mu}m)$ compared with other cortexes was the thinnest in fetal phase. In the suckling phase, each cortex grew thick quickly but, after weanning phase, the growth of the cortex slowed and the thickness of cortex was similar to that of cortex in the adult phase. At 105 day after birth, the parietal cortex was thickest $(934{\pm}21.6\;{\mu}m)$ but, decreased compared with control group $(1113{\pm}19.0\;{\mu}m)$. When EGEE was injected in intraperitoneal of rat, the number of neuroblasts per unit area was largest $(207.7{\pm}11.4/10^{-2}\;mm$ at the mantle layer of parietal cortex at 14 day of fetal phase but, decreased compared with control group $(224.2{\pm}13.8/10^{-2}\;mm$ , and the size was largest $(7.5{\pm}1.3\;{\mu}m)$ at the ependymal cell layer of occipital cortex at 3 day after birth but, decreased compared with control group $(9.0{\pm}1.2\;{\mu}m)$. Simillar to control group, the number of granular cells and pyramidal cells were largest at the II and III layer of parietal cortex, but decreased during developmental phase. The size was largest at the IV and V layer of occipital cortex but it was decreased compared with control group. When EGEE was injected in intraperitoneal of rat, the cerebral cortex from fetal phase to 3 day after birth has differentiated into the 3 layers; ependymal, mantle and marginal layer, but empty cisternaes or vacoules in the cerebral cortexes and the condensed phases of neuroblasts were appeared. From 5 day after birth, it has differentiated into the 4 layers; molecular, external granular, mixed layer of internal granular, external and internal pyramidal cells and multiformal layer but, empty cisternaes or vacoules in the granular and pyramidal cell layers were appeared and the number per unit area of neuron was decreased. In the cerebral cortex of the weaning and adult phases, division of cell layers was not clear and empty cisternae was formed in the cortex with the cells in external granular and pyramidal cell layers, was magnified or condensed around blood vessels of neurons.

Alterations in Cerebrovascular Reactivity by Trigeminovascular System Injury in Rats

  • Park Sang June;Choi Chang Hwa;Lee Won Suk
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.211-219
    • /
    • 2005
  • Trigeminovascular system plays an important role for the cerebral memodynamics. The aim of this study was to investigate the alterations in cerebrovascular reactivity by trigeminovascular system injury in rats. Trigeminovascular system of male Sprague-Dawley rats was injured by either denervation of nasocilliary nerve or neonatal capsaicin treatment. Trigeminovascular system was stimulated by controlled hemorrhagic hypotension or somatosensory (whisker) stimulation. Changes in regional cerebral blood flow (rCBF) and pial arterial diameter were continuously measured by laser-Doppler flowmetry and videomicroscopy, respectively. Nitric oxide synthase (NOS) activity in cerebral cortex was determined by measuring the conversion of $L-^3H-arginine\;to\;L-^3H-citrulline$. Cyclic GMP levels in cerebral cortex and pial artery were determined using the cyclic GMP $^{125}I$ scintillation proximity assay system. rCBF autoregulation was impaired or almost abolished by trigeminovascular system injury. rCBF response to whisker stimulation was significantly attenuated by trigeminovascular system injury. NOS activity as well as cyclic GMP level in cerebral cortex and pial artery were significantly reduced in the group of trigeminovascular system injury. These results suggest that trigeminovascular system injury causes prominent alterations in cerebrovascular reactivity, and that NO, which is generated by neuronal NOS in the trigeminovascular system, is implicated in the regulation of rCBF.

  • PDF

Effect of Carbon Monoxide Intoxication on the Change in Contents of Cerebral Energy Metabolites of Rats (흰쥐에서의 일산화탄소(一酸化炭素) 중독(中毒)이 뇌(腦)에너지 대사(代謝) 관련물질(關聯物質) 함량변화(含量變化)에 미치는 영향)

  • Yun, Jae-Soon;Choi, Shin-Kyu
    • YAKHAK HOEJI
    • /
    • v.33 no.3
    • /
    • pp.149-155
    • /
    • 1989
  • To predict the influence of carbon monoxide poisonining on cerebral energy metabolism, rats were exposed to 5000 ppm environment for 30 minutes. Carboxyhemoglobin (HBCO) saturation rate in this condition was 72% equally in male and female rats. Cerebral cortex in the rats showed lower level of ATP, glucose, creatine phosphate and higher level of lactate, pyruvate by anaerobic glycolysis. As for the levels of ATP, creatine phsphate and glucose, the cerebral cortex contents of them were larger in female rats of estrus than in male rats, whereas there was no difference between sexes in the levels of pyruvate and lactate. According to time passage from CO intoxication, the mode of changes in cerebral energy metabolite contents was similar in both sexes.

  • PDF

Regulation of $[^3H]Norepinephrine$ Release by Opioids in Human Cerebral Cortex

  • Woo, Ran-Sook;Shin, Byoung-Soo;Kim, Chul-Jin;Shin, Min-Soo;Jeong, Min-Suk;Zhao, Rong-Jie;Kim, Kee-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.1-3
    • /
    • 2003
  • To investigate the receptors mediating the regulation of norepinephrine (NE) release in human cerebral cortex slices, we examined the effects of opioid agonists for ${\mu}$-, ${\delta}$-, and ${\kappa}$-receptors on the high potassium (15 mM)-evoked release of [$^3H$]NE. [$^3H$]NE release induced by high potassium was calcium-dependent and tetrodotoxin-sensitive. [$D-Pen^2$, $D-Pen^5$]enkephalin (DPDPE) and deltorphin II (Delt II) inhibited the stimulated release of norepinephrine in a dose-dependent manner. However, Tyr-D-Ala-Gly-(Me)Phe-Gly-ol and U69,593 did not influence the NE release. Inhibitory effect of DPDPE and Delt-II was antagonized by naloxone, naltrindole, 7-benzylidenaltrexone and naltriben. These results suggest that both ${\delta}_1$ and ${\delta}_2$ receptors are involved in regulation of NE release in human cerebral cortex.