• Title/Summary/Keyword: ceramides

Search Result 43, Processing Time 0.024 seconds

Stability and Formation Mechanism for MLV liposomes with Phospholipid Film by Use of the Microfluidizer

  • Kim, In-Young;Seo, Bong-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.99-114
    • /
    • 1996
  • The MLV liposomes have been developed in many drugs and cosmetics fields. The phospholipid base is made from ceramides, cholesterol, cholesteryl ester, lecithin, lanolin ester, and B-sitosterol, and surfactants are made by using (PEG)n-sitosterol(n=5) and K-cetyl phosphate. We made visicles stable by passing samples through Microfludizer and croated multilamellar vesicles to make MLV liposomes similar to the structure of men's skin. In order to make MLV liposomes, we created lipid membrane films which a mixure of phospholipid base and polyol group was reacted above Tc(95$^{\circ}C$) by gelation for 3 hours. As the optimum conditions of Microfluidizer, we figured out 700 bar for the passing pressure of samples, 4$0^{\circ}C$ for its temperature, and 3 times of frequency to pass through samples. Our MLV liposomes is stable on conditions of a low temperature(5$^{\circ}C$) and a high temperature(45$^{\circ}C$), which is not to be split in a large range. We produced our own moisturizing cream which has a good affinity to skin by means of this system.

  • PDF

Insulin resistance and Alzheimer's disease

  • De La Monte, Suzanne M.
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.475-481
    • /
    • 2009
  • Emerging data demonstrate pivotal roles for brain insulin resistance and insulin deficiency as mediators of cognitive impairment and neurodegeneration, particularly Alzheimer's disease (AD). Insulin and insulin-like growth factors (IGFs) regulate neuronal survival, energy metabolism, and plasticity, which are required for learning and memory. Hence, endogenous brain-specific impairments in insulin and IGF signaling account for the majority of AD-associated abnormalities. However, a second major mechanism of cognitive impairment has been linked to obesity and Type 2 diabetes (T2DM). Human and experimental animal studies revealed that neurodegeneration associated with peripheral insulin resistance is likely effectuated via a liver-brain axis whereby toxic lipids, including ceramides, cross the blood brain barrier and cause brain insulin resistance, oxidative stress, neuro-inflammation, and cell death. In essence, there are dual mechanisms of brain insulin resistance leading to AD-type neurodegeneration: one mediated by endogenous, CNS factors; and the other, peripheral insulin resistance with excess cytotoxic ceramide production.

Dietary effect of silk protein on epidermal levels of free sphingoid bases and phosphate metabolites in NC/Nga mice (실크 단백질의 식이 공급이 아토피 피부염 동물 모델 NC/Nga Mice 표피의 스핑고이드 베이스 및 인산화물 함량 변화에 미치는 영향)

  • Kim, Young-Ae;Song, Eun-Hwa;Shin, Kyoung-Oh;Lee, Yong-Moon;Cho, Yun-Hi
    • Journal of Nutrition and Health
    • /
    • v.45 no.2
    • /
    • pp.113-120
    • /
    • 2012
  • In our previous studies, dietary supplements of silk protein, sericin, and fibroin, were beneficial for improving epidermal levels of ceramides, which are the major lipids for maintaining the epidermal barrier. In this study, we investigated the dietary effects of silk protein on epidermal levels of free sphingoid bases and their phosphates such as $C_{18}$ sphingosine (So), $C_{18}$ sphinganine (Sa), $C_{18}$ sphingosine-1-phosphate (S1P), and $C_{18}$ sphinganine-1-phosphate (Sa1P), which are either synthetic substrate or degradative metabolites of ceramides. Forty-five male NC/Nga mice, an animal model of atopic dermatitis (AD), were divided into three groups: group CA was an atopic control and fed a control diet, group S was fed a 1% sericin diet, and group F was fed a 1% fibroin diet. Fifteen male BALB/c mice served as group C (control group) and were fed the control diet. All mice were fed with diets and water $ad$ $libitum$ for 10 weeks. Sa in group CA was lower than that in group C, but So in group CA was similar to that in group C. So and Sa were higher in groups S and F than those in group CA; So level was even higher than that in group C, and Sa level was similar to that of group C. The So/Sa ratio in group CA, which is reported to increase in AD, was significantly higher than that of group C. The So/Sa ratio was lower in groups S and F than that in group CA, and decreased further in group F. However, S1P and Sa1P in groups S and F were similar to those in group CA. Taken together, we demonstrated that silk protein, sericin and fibroin dietary supplements, increased So and Sa levels, and decreased the So/Sa ratio.

The Effect of Jeju Wild Ginseng Extracts on Skin Barrier via Serine-Palmitoyltransferase (제주산양산삼이 세린-팔미토일 전이효소(Serine-Palmitoyltransferase)를 통해 피부 장벽에 미치는 효과에 대한 연구)

  • Kim, Hyo Min;Lee, Jung No;Kim, Jae Moon;Kim, Sung Kyu;Park, Sung-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • Skin is the largest organ that protects the body from the external environmental factors such as smog, cigarette smoke, UV. Protective skin barrier is composed with keratinizational keratinocytes and intercellular lipids such as ceramides, cholesterols and fatty acids combined by the lamellar liquid crystal structure. In this research, we confirmed that the Jeju wild ginseng (JWG) extracts dose-dependently increased the expression of serine-palmitoyltransferase (SPT) protein which is associated with ceramide biosynthesis. In addition, emulsion containing 5% JWG extract was applied on skin of human volunteers for 2 weeks and then significantly reduced transepidermal water loss (TEWL) compared to that of control group. As a results, JWG extract increased the biosynthesis of ceramides that is the key components of the skin lipid through enhancing expression of SPT. In addition, JWG extract reduced TEWL resulting in improvement of skin barrier function. In this context, we suggest that JWG extract could be used as a skin barrier enhancer and moisturing agents in cosmetic fileds.

Purification and Characterization of Mitochondrial Mg2+-Independent Sphingomyelinase from Rat Brain

  • Jong Min Choi;Yongwei Piao;Kyong Hoon Ahn;Seok Kyun Kim;Jong Hoon Won;Jae Hong Lee;Ji Min Jang;In Chul Shin;Zhicheng Fu;Sung Yun Jung;Eui Man Jeong;Dae Kyong Kim
    • Molecules and Cells
    • /
    • v.46 no.9
    • /
    • pp.545-557
    • /
    • 2023
  • Sphingomyelinase (SMase) catalyzes ceramide production from sphingomyelin. Ceramides are critical in cellular responses such as apoptosis. They enhance mitochondrial outer membrane permeabilization (MOMP) through self-assembly in the mitochondrial outer membrane to form channels that release cytochrome c from intermembrane space (IMS) into the cytosol, triggering caspase-9 activation. However, the SMase involved in MOMP is yet to be identified. Here, we identified a mitochondrial Mg2+-independent SMase (mt-iSMase) from rat brain, which was purified 6,130-fold using a Percoll gradient, pulled down with biotinylated sphingomyelin, and subjected to Mono Q anion exchange. A single peak of mt-iSMase activity was eluted at a molecular mass of approximately 65 kDa using Superose 6 gel filtration. The purified enzyme showed optimal activity at pH of 6.5 and was inhibited by dithiothreitol and Mg2+, Mn2+, Ni2+, Cu2+, Zn2+, Fe2+, and Fe3+ ions. It was also inhibited by GW4869, which is a non-competitive inhibitor of Mg2+-dependent neutral SMase 2 (encoded by SMPD3), that protects against cytochrome c release-mediated cell death. Subfractionation experiments showed that mt-iSMase localizes in the IMS of the mitochondria, implying that mt-iSMase may play a critical role in generating ceramides for MOMP, cytochrome c release, and apoptosis. These data suggest that the purified enzyme in this study is a novel SMase.

Screening of Xerosis Inhibitor from Seaweed Extracts Using HaCaT Keratinocyte

  • Yoon, Seung-Je;Khan, Mohammed N.A.;Kang, Ji-Young;Nam, Ju-Hyun;Ahn, Dong-Hyun;Hong, Yong-Ki
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.31-34
    • /
    • 2010
  • The primary function of the skin is to protect the body from the unwanted environmental influences. The outermost layer of the skin is stratum corneum which consists of corneocytes surrounded by lipid regions. Ceramides covalently bound to keratinocytes are essential for the barrier function of the skin, which can be disturbed in the disease, like xerosis. Xerosis is an abnormal dryness of the skin which reduced the thickness of stratum corneum and ceramide content decreasing with age. In this study, 36 seaweed extracts have been tested for screening of xerosis inhibitory agent by in vitro HaCaT keratinocyte assay. Ishige sinicola and Helminthocladia australis induced the significant amount of ceramide-like substance I in HaCaT keratinocyte among the tested seaweed extracts. Sargassum fulvellum, Chondrus ecellatus and Gigartina tenella also induced the ceramide-like substance I whereas Helminthocladia australis and Pachymeniopsis elliptica induced the ceramide-like II from HaCaT keratinocyte.

  • PDF

Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells

  • Maeng, Hyo Jin;Song, Jae-Hwi;Kim, Goon-Tae;Song, Yoo-Jeong;Lee, Kangpa;Kim, Jae-Young;Park, Tae-Sik
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.144-149
    • /
    • 2017
  • Ceramides are the major sphingolipid metabolites involved in cell survival and apoptosis. When HepG2 hepatoma cells were treated with celecoxib, the expression of the genes in de novo sphingolipid biosynthesis and sphingomyelinase pathway was upregulated and cellular ceramide was elevated. In addition, celecoxib induced endoplasmic reticulum (ER) stress in a time-dependent manner. SPTLC2, a subunit of serine palmitoyltransferase, was overexpressed by adenovirus. Adenoviral overexpression of SPTLC2 (AdSPTLC2) decreased cell viability of HEK293 and HepG2 cells. In addition, AdSPTLC2 induced apoptosis via the caspase-dependent apoptotic pathway and elevated cellular ceramide, sphingoid bases, and dihydroceramide. However, overexpression of SPTLC2 did not induce ER stress. Collectively, celecoxib activates de novo sphingolipid biosynthesis and the combined effects of elevated ceramide and transcriptional activation of ER stress induce apoptosis. However, activation of de novo sphingolipid biosynthesis does not activate ER stress in hepatoma cells and is distinct from the celecoxib-mediated activation of ER stress.

Study on Stability of Ceramides in Liquid Crystalline Emulsions at High Temperature (세라마이드의 액정에멀젼 내 고온 제형 안정성 연구)

  • Hong, Sung Yun;Chang, Yujin;Lee, Jun Bae;Park, Chun Ho;Park, Myung Sam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • We introduce to prepare liquid crystalline emulsion composed of cetearyl alcohol, cetyl palmitate, sorbitan palmitate, sorbitan olivate, ceramide and so on which can enforce interface between oil-based particle and water phase. In terms of structural analysis, the stability of the liquid crystalline emulsion including ceramide, which is immisible ingredient, at high temperature was proved by polarized microscope, cryo-SEM, small-angle x-ray scattering, in addition to viscometer and static light scattering by physical analysis.

Liquid Crystal Emulsions Containing High Content Ceramides for Improved Skin Barrier Functions

  • Lee, Jun Bae;Noh, Minjoo;Kim, Su Ji;Jang, Jihui
    • Korea Journal of Cosmetic Science
    • /
    • v.1 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • In this work, we fabricated liquid crystal (LC) emulsions with fatty alcohol in order to stabilize high content ceramide in cosmetic formulation. We investigated the role of fatty alcohol and surfactant in the formation of higher order structure. As a result, we found that they play a crucial role to form higher order structure. SAXS study shows that ceramide can be incorporated up to 3% in cosmetic formulation with higher order structure and its stability was maintained up to 12 weeks at room temperature. According to WAXS study, the higher order structure can suppress the re-crystallization of ceramide in cosmetic formulation. Finally, we performed in vivo skin barrier recovery test for the damaged skin. LC emulsions with ceramide and O/W emulsions show significant effect in skin barrier recovery at D 1, D 2 and D 6 compared to the untreated condition. While only LC emulsions show significant skin recovery effect at D 14. We expect that LC emulsions are the promising skin carrier to stabilize ceramide and LC emulsions with ceramide can improve the skin barrier function.