DOI QR코드

DOI QR Code

Liquid Crystal Emulsions Containing High Content Ceramides for Improved Skin Barrier Functions

  • Received : 2019.12.20
  • Accepted : 2019.12.27
  • Published : 2019.12.30

Abstract

In this work, we fabricated liquid crystal (LC) emulsions with fatty alcohol in order to stabilize high content ceramide in cosmetic formulation. We investigated the role of fatty alcohol and surfactant in the formation of higher order structure. As a result, we found that they play a crucial role to form higher order structure. SAXS study shows that ceramide can be incorporated up to 3% in cosmetic formulation with higher order structure and its stability was maintained up to 12 weeks at room temperature. According to WAXS study, the higher order structure can suppress the re-crystallization of ceramide in cosmetic formulation. Finally, we performed in vivo skin barrier recovery test for the damaged skin. LC emulsions with ceramide and O/W emulsions show significant effect in skin barrier recovery at D 1, D 2 and D 6 compared to the untreated condition. While only LC emulsions show significant skin recovery effect at D 14. We expect that LC emulsions are the promising skin carrier to stabilize ceramide and LC emulsions with ceramide can improve the skin barrier function.

Keywords

References

  1. P. M. Elias, Epidermal lipids, barrier function, and desquamation, J. Invest. Dermatol., 80(Suppl 1), 44 (1983). https://doi.org/10.1111/1523-1747.ep12531034
  2. P. M. Elias, Stratum corneum defensive functions: an integrated view, J. Invest. Dermatol., 125(2), 183 (2005). https://doi.org/10.1111/j.0022-202X.2005.23668.x
  3. P. M. Elias, D. S. Friend, The permeability barrier in mammalian epidermis, J. Cell Biol., 65(1), 180 (1975). https://doi.org/10.1083/jcb.65.1.180
  4. G. Swanbeck, N. Thyresson, An x-ray diffraction study of scales from different dermatoses, Acta Derm. Venereol., 41, 289 (1961).
  5. G. Swanbeck, N. Thyresson, A study of the state of aggregation of the lipids in normal and psoriatic horny layer, Acta Derm. Venereol., 42, 445 (1962).
  6. J. A. Bouwstra, G. S. Gooris, J. A. van der Spek, and W. Bras, Structural investigations of human stratum corneum by small-angle X-ray scattering, J. Invest. Dermatol., 97(6), 1005 (1991). https://doi.org/10.1111/1523-1747.ep12492217
  7. J. C. Garson, J. Doucet, J. L. Leveque, and G. Tsoucaris, Oriented structure in human stratum corneum revealed by X-ray diffraction, J. Invest. Dermatol., 96(1), 43 (1991). https://doi.org/10.1111/1523-1747.ep12514716
  8. J. Bouwstra, G. Gooris, M. Salomons-de Vries, J. Van der Spek, and W. Bras, Structure of human stratum corneum as a function of temperature and hydration: a wide-angle X-ray diffraction study, Int. J. Pharm., 84(3), 205 (1992). https://doi.org/10.1016/0378-5173(92)90158-X
  9. D. Groen, G. Gooris, and J. Bouwstra, New insights into the stratum corneum lipid organization by X-ray diffraction analysis, Biophys. J., 97(8), 2242 (2009). https://doi.org/10.1016/j.bpj.2009.07.040
  10. S. Yoshida, Y. Obata, Y. Onuki, S. Utsumi, N. Ohta, H. Takahashi, and K. Takayama, Molecular interaction between intercellular lipids in the stratum corneum and l-menthol, as analyzed by synchrotron X-ray diffraction, Chem. Pharm. Bull., 65(2), 134 (2017). https://doi.org/10.1248/cpb.c16-00639
  11. A. S. Breathnach, T. Goodman, C. Stolinski, and M. Gross, Freeze-fracture replication of cells of stratum corneum of human epidermis, J. Anat., 114(1), 65 (1973).
  12. A. S. Breathnach, Aspects of epidermal ultrastructure, J. Invest. Dermatol., 65(1), 2 (1975). https://doi.org/10.1111/1523-1747.ep12598018
  13. J. B. Lee, D. R. Lee, N. C. Choi, J. Jang, C. H. Park, M. S. Yoon, M. Lee, K. Won, J. S. Hwang, and B. M. Kim, Efficient dermal delivery of retinyl palmitate: progressive polarimetry and Raman spectroscopy to evaluate the structure and efficacy, Eur J Pharm Sci, 78, 111 (2015). https://doi.org/10.1016/j.ejps.2015.07.009
  14. B. Ongpipattanakul, M. L. Francoeur, and R. O. Potts, Polymorphism in stratum corneum lipids, Biochim. Biophys. Acta, 1190(1), 115 (1994). https://doi.org/10.1016/0005-2736(94)90040-X
  15. C. L. Gay, R. H. Guy, G. M. Golden, V. H. Mak, and M. L. Francoeur, Characterization of low-temperature (ie,< 65 C) lipid transitions in human stratum corneum, J. Invest. Dermatol., 103(2), 233 (1994). https://doi.org/10.1111/1523-1747.ep12393214
  16. J. A. Bouwstra, G. S. Gooris, W. Bras, and D. T. Downing, Lipid organization in pig stratum corneum, J. Lipid Res., 36(4), 685 (1995). https://doi.org/10.1016/S0022-2275(20)40054-9
  17. J. A. Bouwstra, G. S. Gooris, J. Brussee, M. A. Salomons-de Vries, and W. Bras, The influence of alkyl-azones on the ordering of the lamellae in human stratum corneum, Int. J. Pharm., 79(1-3), 141 (1992). https://doi.org/10.1016/0378-5173(92)90105-B
  18. G. S. Pilgram, A. M. Engelsma-van Pelt, H. K. Koerten, and J. A. Bouwstra, Electron diffraction provides new information on human stratum corneum lipid organization studied in relation to depth and temperature, J. Invest. Dermatol., 113(3), 403 (1999). https://doi.org/10.1046/j.1523-1747.1999.00706.x
  19. S. Abrahamsson, B. Dahlen, H. Lofgren, and I. Pascher, Lateral packing of hydrocarbon chains, Prog. Chem. Fats Other Lipids, 16, 125 (1978). https://doi.org/10.1016/0079-6832(78)90039-3
  20. J. A. Bouwstra, F. Dubbelaar, G. S. Gooris, A. M. Weerheim, and M. Ponec, The role of ceramide composition in the lipid organisation of the skin barrier, Biochim. Biophys. Acta, 1419(2), 127 (1999). https://doi.org/10.1016/S0005-2736(99)00057-7
  21. P. W. Wertz, M. C. Miethke, S. A. Long, J. S. Strauss, and D. T. Downing, The composition of the ceramides from human stratum corneum and from comedones, J. Invest. Dermatol., 84(5), 410 (1985). https://doi.org/10.1111/1523-1747.ep12265510
  22. Y. Mizutani, S. Mitsutake, K. Tsuji, A. Kihara, and Y. Igarashi, Ceramide biosynthesis in keratinocyte and its role in skin function, Biochimie, 91(6), 784 (2009). https://doi.org/10.1016/j.biochi.2009.04.001
  23. J. Novotny, B. Janusova, M. Novotny, A. Hrabalek, and K. Vavrova, Short-chain ceramides decrease skin barrier properties, Skin Pharmacol Physiol, 22(1), 22 (2009). https://doi.org/10.1159/000183923
  24. E. Simpson, A. Bohling, S. Bielfeldt, C. Bosc, and N. Kerrouche, Improvement of skin barrier function in atopic dermatitis patients with a new moisturizer containing a ceramide precursor, J. Dermatol. Treat., 24(2), 122 (2013). https://doi.org/10.3109/09546634.2012.713461
  25. M. Behne, Y. Uchida, T. Seki, P. O. de Montellano, P. M. Elias, and W. M. Holleran, Omega- hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function, J. Invest. Dermatol., 114(1), 185 (2000). https://doi.org/10.1046/j.1523-1747.2000.00846.x
  26. J. Bouwstra, G. Pilgram, G. Gooris, H. Koerten, and M. Ponec, New aspects of the skin barrier organization, Skin Pharmacol. Appl. Skin Physiol., 14(Suppl. 1), 52 (2001).
  27. M. W. de Jager, G. S. Gooris, I. P. Dolbnya, W. Bras, M. Ponec, and J. A. Bouwstra, The phase behaviour of skin lipid mixtures based on synthetic ceramides, Chem. Phys. Lipids, 124(2), 123 (2003). https://doi.org/10.1016/S0009-3084(03)00050-1
  28. K. Tanaka, T. Seto, and T. Hayashida, Phase transformation of n-higher alcohols, Bull. Inst. Chem. Res. Kyoto Univ., 35,123 (1958).
  29. S. Fukushima, M. Yamaguchi, and F. Harusawa, Effect of cetostearyl alcohol on stabilization of oil-in-water emulsion: II. Relation between crystal form of the alcohol and stability of the emulsion, J. Colloid Interface Sci., 59(1), 159 (1977). https://doi.org/10.1016/0021-9797(77)90350-2
  30. S. Fukushima, M. Yamaguchi, Effect of water on melting point and transition point of higher alcohols, J. Japan Oil Chemists' Society, 29(12), 933 (1980). https://doi.org/10.5650/jos1956.29.933