• Title/Summary/Keyword: ceramic-polymer composite

Search Result 164, Processing Time 0.021 seconds

A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor (가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구)

  • Huh, Tae-Hwan;Song, Hyeon Jun;Jeong, Yeong Jin;Kwark, Young-Je
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2020
  • In this paper, we manufactured silsesquiaznae (SSQZ)-coated carbon nanotube (CNT) surface heating elements, which allowed stable heating at high temperatures. The prepared composite sheet was confirmed by FE-SEM that the SSQZ fully coated the surface of CNT sheet. Furthermore, it was also confirmed that the silicon carbonitride (SiCN) ceramic formed by heat treatment of 800℃ have no defects found and maintain intact structure. The CNT/SiCN composite sheet was able to achieve higher thermal stability than raw CNT sheets in both nitrogen and air atmosphere. Finally, the CNT/SiCN composite sheet was possible to heat up at a temperature of over 700℃ in the atmosphere, and the re-heating was successfully operated after cooling.

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름)

  • Lee, Seong Tae;Kim, Chi Heon;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.

Thermal and Rheological Characterizations of Polycarbosilane Precursor by Solvent Treatment (폴리카보실란 전구체의 용매 처리에 따른 열적 및 유변학적 특성 분석)

  • Song, Yeeun;Joo, Young Jun;Shin, Dong Geun;Cho, Kwang Youn;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • Polycarbosilane(PCS) is an important precursor for melt-spinning the silicon carbide(SiC) fibers and manufacturing ceramics. The PCS is a metal-organic polymer precursor capable of producing continuous SiC fibers having excellent performance such as high-temperature resistance and oxidation resistance. The SiC fibers are manufactured through melt-spinning, stabilization, and heat treatment processes using the PCS manufactured by synthesis, purification, and control of the molecular structure. In this paper, we analyzed the effect of purification of unreacted substances and low molecular weight through solvent treatment of PCS and the effect of heat treatment at various temperatures change the polymerization and network rearrangement of PCS. Especially, we investigated the complex viscosity and structural arrangement of PCS precursors according to solvent treatment and heat treatment through the rheological properties.

Performance of Modified-Silicon Carbide Fiber Composites Membrane for Polymer Exchange Membrane Fuel Cells (표면처리된 실리콘 카바이드 섬유 복합막의 고분자 전해질 막 연료전지 성능)

  • Park, Jeong Ho;Kim, Taeeon;Juon, Some;Cho, Yongil;Cho, Kwangyeon;Shul, Yonggun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • The organic-inorganic composite membrane in polymer exchange membrane fuel cells (PEMFCs) have several fascinating technological advantages such as a proton conductivity, thermal stability and mechanical properties. As the inorganic filler, silicon carbide (SiC) fiber have been used in various fields due to its unique properties such as thermal stability, conductivity, and tensile strength. In this study, composite membrane was successfully fabricated by modified-silicon carbide fiber. Modified process, as a novel process in SiC, takes reaction by phosphoric acid after oxidation process (generated homogeniusly $SiO_2$ layer on SiC fiber). The mechanical property which was conducted by tensile test of the 5wt% modified-$SiO_2@SiCf$ composite membrane was better than that of Aquivion casting membrane as well as ion cxchange capacity(IEC) and proton conductivity. In addition, the single cell performance was observed that the 5wt% modified-$SiO_2@SiCf$ composite membrane was approximately $0.2A/cm^2$ higher than that of a Aquivion casting electrolyte membrane and electrochemical impedance was improved with the charge transfer resistance and membrane resistance.

Dielectric Properties of LCP and $BaTiO_3-SrTiO_3$ Composites for Embedded Matching Capacitors (내장형 capacitor를 위한 LCP와 $BaTiO_3-SrTiO_3$ 복합재의 유전특성)

  • Kim, Jin-Cheol;Yoon, Sang-Jun;Yoon, Keum-Hee;Oh, Jun-Rok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.60-60
    • /
    • 2008
  • We manufactured Liquid Crystal Polymer (LCP) and (1-x)$BaTiO_3-xSrTiO_3$(BST) ceramic composites and investigated dielectric properties to use as embedded capacitor in printed circuit boards and replace LTCC substrates. The dielectric properties of these composites are varied with volume fraction of BST and ratios of BT/ST. Dielectric constants are in the range of 3~28. In addition, we could get low TCC and High Q value that could not achieve in other ceramic-polymer composites. Especially, in composite with x=0.4 and 50vol% BST, the dieletric constant and Q-value are 27 and 300, respectively. And more TCC is -116~145ppm/$^{\circ}C$ in the temperature range of -55~$125^{\circ}C$. We think that this composites can be used high-Q substrate material like LTCC and embedded temperature compensation capacitor in printed circuit boards.

  • PDF

Dielectric Properties of Liquid Crystalline Polymers and $CaTiO_3-LaAlO_3$ Composites for Embedded Matching Capacitors (내장형 capacitor를 위한 LCP와 $CaTiO_3-LaAlO_3$ 복합재의 유전특성)

  • Kim, Jin-Cheol;Oh, Jun-Rok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.232-233
    • /
    • 2007
  • We manufactured Liquid Crystal Polymer (LCP) and (1-x)CaTiO3-xLaAlO3 (CT-LA) ceramic composites and investigated dielectric properties to use as embedded capacitor in printed circuit boards and replace LTCC substrate. The dielectric properties of these composites are varied with volume fraction of CT-LA and ratios of CT/LA. Dielectric constants are in the range of 3~15. In addition, we could get low TCC and High Q value that could not achieve in other ceramic-polymer composites. Especially, in composite with x=0.01 and 30 vol% CT-LA, the dieletric constant and Q-value are 10 and 200, respectively. And more TCC is $-28{\sim}300ppm/^{\circ}C$ in the temperature range of $-55{\sim}125^{\circ}C$. We think that this composites can be used high-Q substrate material like LTCC and embedded temperature compensation capacitor in printed circuit boards.

  • PDF

Characterization of Ceramic Composite-Membranes Prepared by TEOS-PEG Coating Sol (TEOS-PEG계 Sol-Gel코팅에 의한 세라믹 분리 막의 제조 및 특성)

  • Kim, Tae-Bong;Choi, Se-Young;Kim, Goo-Dae
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.165-170
    • /
    • 2005
  • Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under various molecular weight of polymer species[polyethylene glycol(PEG)] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol(PEG)]. The properties of as-prepared ormosil sol such as viscosity and gelation time are characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its microstructure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross­flow apparatus. The ormosil sol coated membrane was easily formed by steric effect of polymer and it improved flux efficiency because infiltration into porous support decreased. Its flux efficiency was elevated about $200\;l/m^2h$ compared with colloidal sol coated membrane at point of five minutes from starting test.

Carbon Nanotube/Nafion Composites for Biomimetic Artificial Muscle Actuators

  • Lee, Se-Jong;Yoon, Hyun-Woo;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.198-201
    • /
    • 2007
  • Multi-walled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by solution casting to elucidate the effect of M-CNT addition, from 0 to 7 wt%, on the viscoelastic behavior of the composites. The M-CNT bundles induced by the Nafion polymer were determined to be uniformly distributed for the 1 wt% M-CNT/Nafion nanocomposites. The 1 wt% M-CNT/Nafion composite exhibited the highest blocking stress of 2.3 kPa due to its high elastic modulus of 0.485 GPa. From a dynamic mechanical analysis, the 1 wt% M-CNT had the highest storage and loss moduli compared with the other samples in all frequency and temperature ranges. From the storage modulus data, the M-CNT loaded composites had similar $T_g$ values near $120^{\circ}C$. The glass transition temperatures of the M-CNT loaded composites were $120^{\circ}C$ (1 wt%), $117^{\circ}C$ (3 wt%), $117^{\circ}C$ (5 wt%), and $135^{\circ}C$ (7 wt%), suggesting that the effect of the M-CNTs on the Nafion film begins at 1 wt%. Thus, it has been concluded that the 1 wt% M-CNT disported composite is attractive for actuator applications.

Densification Behavior of C/C Composite Derived from Coal Tar Pitch with Small Amount of Iodine Addition (석탄계 피치에 요오드를 소량 첨가하여 제조한 탄소복합재의 치밀화 거동)

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Shin, Dong-Geun;Joo, Heyok-Jong;Koo, Hyung-Hoi;Park, In-Seo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.643-647
    • /
    • 2009
  • We investigated the viscosity behavior and the carbon yield of coal tar pitch (CTP) treated with iodine. The viscosity of iodine treated pitch showed that the fluidity of iodine treated CTP did not increase within the iodine addition of 1.4%. DTG analysis showed that cross linking was accelerated at the temperature range from $400\;to\;500{^{\circ}C}$ with iodine treatment, which is due to the accelerated dehydrogenative reaction by iodine. The iodine treatment was mainly effective for β-resin content increase of CTP. The carbon yield of CTP increased from 40 to 60% by the iodine non-treated CTP.