• Title/Summary/Keyword: ceramic precursor

Search Result 296, Processing Time 0.024 seconds

Effects of Additive Composition and Content on Sintered Density and Compressive Strength of Cordierite Ceramics (첨가제의 조성과 함량이 코디어라이트 세라믹스의 소결밀도와 압축강도에 미치는 영향)

  • Jang, Doo-Hee;Lim, Kwang-Young;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.230-234
    • /
    • 2007
  • Cordierite ceramics were fabricated via a reaction sintering process using ceramics-filled polysiloxane as a precursor for cordierite ceramics. In this study, the effects of the additive composition, additive content, and sintering temperature on the sintered density and compressive strength of cordierite ceramics have been investigated The sintered densities of reaction-sintered cordierite ceramics containing $TiO_2$ as an additive were insensitive to the additive composition, additive content, and sintering temperature and ranged from $1.92g/cm^3\;to\;2.06g/cm^3$. In contrast, the cordierite ceramics containing $Y_2O_3$ showed a maximal density of $2.21g/cm^3$ at 5 wt% addition and at a sintering temperature of $1400^{\circ}C$. The compressive strength of cordierite ceramics showed the same tendency with the density. Typical compressive strength of cordierite ceramics containing 5 wt% $Y_2O_3$ as a sintering additive and sintered at $1400^{\circ}C\;was\;{\sim}480MPa$.

Nanoparticle Phosphors Synthesized by Inductively Controlled Plasma Process for Plasma Based Display

  • Yang, Choong-Jin;Park, Jong-Il;Choi, Seung-Dueg;Park, Eon-Byeong;Lee, Young-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.380-386
    • /
    • 2008
  • Optimized volume production of nanoscale phosphor powders synthesized by radio frequency (RF) plasma process was developed for the application to plasma display panels. The nano powders were synthesized by feeding the both solid and liquid type precursors, and nanoparticle phosphors were characterized in terms of particle size, shape, and photoluminescence (PL) intensities. Computer simulation was performed in advance to determine the process parameters, and nano phosphors were evaluated by comparing with current commercial micron-sized phosphor powders. Practical feeding of both solid and liquid type precursor was proved to be effective for volume production.The developed process showed a potential as a production method for red, blue and green phosphor although the PL intensity still needs further improvement.

Effects of Drying Temperature on the $LiCoO_2$ Thin Films Fabricated by Sol-gel Method

  • Kim, Mun-Kyu;Park, Kyu-Sung;Kim, Duk-Su;Son, Jong-Tae;Kim, Ho-Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • $LiCoO_{2}$ thin films have received attention as cathodes of thin film microbatteries in these days. In this study, $LiCoO_{2}$ thin films are fabricated by a sol-gel spin coating method followed by a post-annealing process. The thermal decomposition behaviour of precursor is investigated by TG/DTA analysis. The change of crystallinity, microstructure and electrochemical properties of final films as the drying temperature changes are also studied by XRD, SEM and galvanostatic charge/discharge cycling test. The relationship between the discharge capacity and the drying temperature are intensively investigated in this work.

  • PDF

Synthesis and Photocatalytic Activity of TiO2-ZrO2 Nano-Sized Powders by Sol-Gel Process

  • Han, Jae-Kil;Saito Fumio;Park, Jong-Gu;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.7-10
    • /
    • 2005
  • [ $TiO_{2}-ZrO_{2}$ ] powders were successfully synthesized by the sol-gel process using titanium iso-propoxide as a precursor. The amorphous $TiO_{2}$ particles, 70 nm in size, homogenously adhered to the surface of $ZrO_{2}$ the powders. After calcination at $450^{circ}C$, most of the $TiO_{2}$ powders appeared as an anatase type, whereas they changed to a rutile phase at $750^{circ}C$. For comparison of photocata­lytic activity, $TiO_{2}-ZrO_{2}$ nano-sized powders calcined at $450^{circ}C,\;600^{circ}C,\;and\;750^{circ}C$ were used. In the $TiO_{2}-20wt\%$ $ZrO_{2}$ powders cal­cined at $450^{circ}C$, there was excellent removal efficiency of Methyl Orange (MO). For the calcination temperature increased, $TiO_{2}­ZrO_{2}$ nano-sized powders increased $ZrO_{2}$ contents showed the good photoactivity for the photooxidation of MO.

Preparation of Nano-size BaTiO3 Powders Using Glycothermal Method (Glycothermal법을 이용한 나노 사이즈 BaTiO3분말의 제조)

  • 김병규;임대영;노준석;조승범
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.642-648
    • /
    • 2002
  • Barium Titanate(BaTiO$_3$) nanoparticles were prepared at 22$0^{\circ}C$ through glycothermal process by using barium hydroxide and amorphous titanium hydrous gel as precursor and 1,4-butanediol and distilled water as solvent. It is demonstrated that the size of BaTiO$_3$ particles can be controlled by reaction conditions such as various content of 1,4-butanediol/distilled water volume ratio. This processing method can fabricate BaTiO$_3$ powders, which have a narrow distribution and exhibit good dispersion. The particle size of BaTiO$_3$ powders obtained by glycothermal process were about 50 nm to 200 nm on the condition that reaction temperature was 22$0^{\circ}C$ and holding time was 24 h.

Preparation Method of Spherical 0.9PMN-0.1PT Powder (구형의 PMN-PT 분말 제조 방법)

  • 임경란;정순용;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.687-692
    • /
    • 2002
  • Preparation of spherical single-perovskite phase PMN-PT powder was tried by surface modification of the precursor powder with magnesia sol. The ball-milled mixed powder was heat treated at 550$\^{C}$/l h to remove any volatiles. The calcined powder was treated with the magnesia sol of 0.3-1.0 wt% and followed by calcination at 800$\^{C}$/l h to give rise to single phase perovskite PMN-PT powders. The powder with a binary size of <0.3 ㎛ and -2 ㎛ was obtained for MgO(0.3), but the spherical, agglomerate-free powder of 0.5-0.8 ㎛ was obtained for MgO(0.6) as well as for MgO(1.0).

Effects of CuO Addition on the Dielectric Properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ceramics (CuO의 첨가가 PMN-PT 세라믹스의 유전특성에 미치는 영향)

  • 김효태;변재동;김인태;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1056-1064
    • /
    • 1995
  • 95Pb(Mg1/3Nb2/3)O3-5PbTiO3 (hereinafter designated as 95PMN-5PT) system was prepared by the columbite-precursor method with 2 mol% excess PbO to compensate the PbO loss during thermal process. The amount of CuO was 1~10 mol%, and the effects of CuO addition on the dielectric properties of this system have been investigated. From the microstructures, XRD analysis and dielectric measurements, the solubility limit of CuO in 95PMN-5PT was found to be around 3 mol%. Lattice parameter and Curie temperature were found to be decreased as the amount of CuO increased up to the solubility limit. This result confirmed that the Cu2+-ions substituted the Pb2+-ions. It was revealed that the addition of CuO on 95PMN-5PT promoted the sinterability and properties. The room temperature dielectric constant, the loss factor and the specific resistivity of the specimens processed with optimum conditions were 23000, 1%, and 8$\times$1011Ω.cm, respectively.

  • PDF

The Effect of Mechanochemical Treatment of the Catalyst in the Preparation of Carbon Nanotubes and their Electrical Properties (탄소나노튜브 합성 및 전기적 특성에 미치는 촉매의 메카노케미컬 처리효과)

  • ;;Fumio Saito
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1110-1114
    • /
    • 2001
  • We report the mechanochemical effect of an Fe(NO$_3$)$_3$$.$9H$_2$O-Al(OH)$_3$sample as catalytic precursor mixed-ground by mixer mill on the growth of carbon nanotubes using thermal chemical vapor deposition method. From and TEM observations, carbon products grown on a ground catalyst were more uniform than those grown on an unground catalyst and most of them were identified as carbon nanobubes. Also, it was observed that field emission properties of products on ground catalyst were superior to those of unground catalyst.

  • PDF

Powder Synthesis and Sintering Behavior of Hydroxyapatite by Citrate Method (Citrate법을 이용한 수산화아파타이트 분말합성 및 소결특성)

  • 임병일;최세영;정형진;정형진;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1003-1011
    • /
    • 1996
  • Hydroxyapatite powder was synthesized by a citrate method, . Char-like precursor composed of Ca8(HPO4)2(PO4)4.5H2O (OCP) and CaCo3 was found via viscous resin-like intermediate by heating the mixed aqueous solution of Ca(NO3)2.4H2O(NH4)2HPO4 and citric acid. Resulted powder was transformed into hydroxyapatite phase by firing over 120$0^{\circ}C$-135$0^{\circ}C$ for 4 hr using the powder calcined at 90$0^{\circ}C$ for 10 hr composed of mostly single hydroxyapatite phase. The sintered densities increased with firing temperature up to 130$0^{\circ}C$ but the highest relative density was about 94% of theoritical value. indicating the presence of closed pores. The maximum 96 MPa of flexural strength was obtained at 120$0^{\circ}C$ firing but the flexural strength showed lower values over the above sintering condition. Vitro test was performed by immersing of two jointed specimens in SBF for seven days and adhesion was observed between two specimens.

  • PDF

Effect of Si/Si3N4 Ratio on the Microstructure and Properties of Porous Silicon Nitrilde Prepared by SHS Methode (규소/질화규소 비가 자전연소합성공정을 이용한 다공질 질화규소 세라믹스의 미세구조와 특성에 미치는 영향)

  • Kim, Dong-Baek;Park, Dong-Soo;Hahn, Byung-Dong;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.338-342
    • /
    • 2007
  • Porous silicon nitride ceramics were prepared by SHS (Self-Propagating High Temperature Synthesis) from silicon powder, silicon nitride powder and pore-forming precursor. The microstructure, porosity and the flexural strength of the porous silicon nitride ceramics were varied according to the Si/Si3N4 ratio, size and amount of the pore-forming precursors. Some sample exhibited as high flexural strength as $162{\pm}24\;MPa$. The high strength is considered to result from the fine pore size and the strong bonding amoung the silicon nitride particles.