• Title/Summary/Keyword: ceramic nanoparticles

Search Result 191, Processing Time 0.022 seconds

Size Control and Optical Properties of ZnO nanoparticles by Zinc-Lithium-Acetate System (Zinc-Lithium-Acetate System을 통한 ZnO 분말 크기제어 및 광학 특성 연구)

  • Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.371-375
    • /
    • 2013
  • ZnO nanoparticles in the size range from 5 to 15 nm were prepared by zinc-lithium-acetate system. The morphologies and structures of ZnO were characterized by TEM, XRD and FT-IR spectra. UV-visible results shows that the absorption of ZnO nanoparticles is blue shifted with decrease in particles size. Furthermore, photoluminescence spectra of the ZnO nanoparticles were also investigated. The ZnO nanoparticles have strong visible-emission intensity and their intensities depend upon size of ZnO nanoparticles.

Fabrication and Characterization of Silica Coated Fe3O4 Nanoparticles in Reverse Micro Emulsion (마이크로에멀젼법을 이용하여 실리카 코팅된 나노 Fe3O4 분말의 합성과 분석연구)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Hwang, Kwang-Taek;Yang, Hee-Seung;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.113-116
    • /
    • 2010
  • The silica coated $Fe_3O_4$ nanoparticles have been synthesized using a micro-emulsion method. The $Fe_3O_4$ nanoparticles with the sizes 6 nm in diameter were synthesized by thermal decomposition method. Hydrophobic $Fe_3O_4$ nanoparticles were coated silica using surfactant and tetraethyl orthosilicated (TEOS) as a $SiO_2$ precursor. Shell thickness of silica coated $Fe_3O_4$ can be controlled (11~20 nm) through our synthetic conditions. The $Fe_3O_4$ and silica coated $Fe_3O_4$ nano powders were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and vortex magnetic separation (VMS).

Sintering and Optical Properties of ZnS Nanoparticles Sintered by Spark Plasma Sintering (방전 플라즈마 소결법에 의한 ZnS 나노입자의 소결과 광학적 특성)

  • Kim, Chang-Il;Kim, You-Bi;Yeo, Seo-Yeong;Hong, Youn-Woo;Yun, Ji-Sun;Park, Woon-Ik;Jeong, Young-Hun;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.349-355
    • /
    • 2017
  • Zinc sulphide (ZnS) nanoparticles were fabricated by hydrothermal synthesis at $180^{\circ}C$ for 12 h. Two kinds of ZnS powder (hydrothermal synthesized ZnS and commercial ZnS) were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for phase and microstructure, respectively. The XRD patterns showed that all ZnS nanoparticles have a sphalerite (cubic) structure. The nanoparticles of two different ZnS powders were sintered by spark plasma sintering. The sintered ZnS were analyzed by XRD, SEM, and FT-IR. We found that the transmittance of the infrared region is highly dependent on the density and crystal structure of sintered ZnS and the purity of the starting ZnS powder.

Silica Coating of Nanosized CoFe2O4 Particles by Micro-emulsion Method (마이크로에멀젼법을 이용한 나노 CoFe2O4 분말의 실리카 코팅)

  • Kim, Yoo-Jin;Yu, Ri;Park, Eun-Young;Pee, Jae-Hwan;Choi, Eui-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$ particles and their surface coating with silica layers using micro emulsion method. The cobalt ferrite nanoparticles with the size 7nm are firstly prepared by thermal decomposition method. Hydrophobic nanoparticles were coated with silica using micro-emulsion method with surfactant, $NH_4OH$, and tetraethylorthosilicate (TEOS). Monodispersed and spherical silica coated cobalt ferrite nanoparticles have average particle diameter of 38 nm and narrow sized distribution.

Hot-Injection Thermolysis of Cobalt Antimony Nanoparticles with Co(II)-Oleate and Sb(III)-Oleate

  • Ahn, Jong-Pil;Kim, Min-Suk;Kim, Se-Hoon;Lee, Byung-Ha;Kim, Do-Kyung;Park, Joo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.367-375
    • /
    • 2016
  • A novel strategy for the synthesis of $CoSb_2$ nanoparticles is demonstrated via preparation of novel organometallic complexes. Hydrated cobalt oleate (CoOl) and non-hydrated antimony oleate (SbOl) complexes are synthesized as precursors. The $CoSb_2$ nanoparticles are prepared by hot injection, which involves thermolysis of CoOl and SbOl in a non-coordinating solvent at $320^{\circ}C$. The coordination modes and distinct thermal behaviors of the intermediate non-hydrated SbOl complexes are comparatively investigated by thermo-analytical techniques. When the reaction temperature is increased, the particle size is found to increase linearly. The crystallinity of the $CoSb_2$ nanoparticles prepared at $250^{\circ}C$ is amorphous phase without any peaks. $CoSb_2$ structural peaks start to appear at $300^{\circ}C$ and dominant peaks with high crystallinity are synthesized at $320^{\circ}C$. The potential chemical structures of non-hydrated SbOl and their reaction mechanisms by thermolysis are elucidated. The elemental composition and crystallographic structure of $CoSb_2$ nanoparticles suggest a bimodal interaction of the organic shell and the nanoparticle surface, with a chemical absorbed inner layer and physically absorbed outer layer of carboxylic acid.

Synthesis and Characterization of CuInS2 Semiconductor Nanoparticles and Evolution of Optical Properties via Surface Modification (CuInS2 나노 반도체 합성 및 표면 개질을 통한 광학적 효율 분석 연구)

  • Yang, Hee-Seung;Kim, Yoo-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.177-181
    • /
    • 2012
  • Copper composite materials have attracted wide attention for energy applications. Especially $CuInS_2$ has a desirable direct band gap of 1.5 eV, which is well matched with the solar spectrum. $CuInS_2$ nanoparticles could make it possible to develop color-tunable $CuInS_2$ nanoparticle emitter in the near-infrared region (NIR) for energy application and bio imaging sensors. In this paper, $CuInS_2$ nanoparticles were successfully synthesized by thermo-decomposition methods. Surface modification of $CuInS_2$ nanoparticles were carried out with various semiconductor materials (CdS, ZnS) for enhanced optical properties. Surface modification and silica coating of hydrophobic nanoparticles could be dispersed in polar solvent for potential applications. Their optical properties were characterized by UV-vis spectroscopy and photoluminescence spectroscopy (PL). The structures of silica coated $CuInS_2$ were observed by transmission electron microscopy (TEM).

Lithium Electroactivity of Cobalt Oxide Nanoparticles Synthesized Using Thermolysis Process (열분해 공정을 통해 합성된 산화 코발트 나노입자의 리튬 전기화학반응성)

  • Jin, Yun-Ho;Shim, Hyun-Woo;Kim, Dong-Wan
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.636-640
    • /
    • 2011
  • Nano-sized cobalt (II) oxide nanoparticles with a high crystallinity were synthesized using thermolysis of a $Co^{2+}$-oleate precursor at 310$^{\circ}C$. The phase and morphology of as-prepared cobalt oxide nanoparticles were characterized using X-ray diffraction, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller surface area measurements. The cobalt oxide nanoparticles were found to be spherical nanoclusters with an average diameter of approximately 200 nm, consisting of tiny nanocrystals (10-20 nm). Furthermore, the Li electroactivites of the cobalt oxide nanoparticles were investigated using cyclic voltammetry and galvanostatic cycling. The cobalt oxide nanoparticles could deliver high capacities over 420 mA h $g^{-1}$ at a C/5 current rate.

Improvement of precision of three-dimensional ceramic microstructures employing silica nanoparticle-mixed precursor (나노 실리카분말의 충진효과를 이용한 극미세 3차원 세라믹 구조물 정밀화)

  • Lim T.W.;Park S.H.;Yang D.Y.;Pham Tuan Anh;Kim D.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-158
    • /
    • 2006
  • A novel nanofabrication process has been developed using two-photon crosslinking (TPC) for the fabrication of three-dimensional (3D) SiCN ceramic microstructures applicable to high functional 3D devices, which can be used in harsh working environments requiring a high temperature, a resistance to chemical corrosion, as well as tribological properties. After sequential processes: TPC and pyrolysis, 3D ceramic microstructures are obtained. However, large shrinkage due to low-ceramic yield during the pyrolysis is a serious problem to be solved in the precise fabrication of 3D ceramic microstructures. In this work, silica nanoparticles were employed as a filler to reduce the amount of shrinkage. In particular, the ceramic microstructures containing 40 wt% silica nanoparticles exhibited relatively isotropic shrinkage owing to its sliding free from the substrate during pyrolysis.

  • PDF

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs (나노입자의 구조와 모양, 담지체 및 하이브리드 시스템 제어를 통한 직접메탄올 연료전지의 촉매 개발)

  • Lee, Young Wook;Shin, Tae Ho
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.189-197
    • /
    • 2019
  • Direct methanol fuel cells (DMFCs) have found a wide variety of commercial applications such as portable computer and mobile phone. In a fuel cell, the catalysts have an important role and durability and efficiency are determined by the ability of the catalyst. The activity of the catalyst is determined by the structure and shape control of the nanoparticles and the dispersion of the nanoparticles and application system. The surface energy of nanoparticles determines the activity by shape control and the nanostructure is determined by the ratio of bi- and tri-metals in the alloy and core-shell. The dispersion of nanoparticles depends on the type of support such as carbon, graphen and metal oxide. In addition, a hybrid system using both optical and electrochemical device has been developed recently.