• 제목/요약/키워드: ceramic ink

검색결과 53건 처리시간 0.025초

Graft Polymer를 이용한 수계 세라믹 잉크의 합성 및 프린팅 특성평가 (Synthesis and Printability of Aqueous Ceramic Ink with Graft Polymer)

  • 이지현;황해진;김진호;황광택;한규성
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.639-646
    • /
    • 2019
  • Ink-jet printing is a manufacturing process technology that directly prints a digitalized design pattern onto a substrate using a fine ink jetting system. In this study, environmentally friendly yellow aqueous ceramic ink is synthesized by mixture of distilled water, yellow ceramic pigment and additives for ink-jet printing. The graft polymer, which combines electrostatic repulsion and steric hindrance mechanism, is used as a surfactant for dispersion stability of aqueous ceramic ink. Synthesized ceramic ink with graft polymer surfactant shows better dispersion stability than did ceramic ink with PAA surfactant; synthesized ink also shows desirable ink-jet printability with the formation of a single ink droplet during printability test. Finally, ceramic ink printed on glass substrate and ceramic ink with graft polymer surfactant shows a high contact angle without surface treatment on glass substrate. Consequently, it is confirmed that the ceramic ink with graft polymer surfactant can achieve high printing resolution without additional surface treatment process.

Ink-Jet 3D Printability of Ceramic Ink with Contact Angle Control

  • Park, Jae-Hyeon;Lee, Ji-Hyeon;Kim, Deug Joong;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.461-467
    • /
    • 2019
  • Ink-jet printing technology, which utilizes a digitalized design to print fine ink directly on a substrate, has been of interest in various industries due to its high efficiency and adaptability to various materials. Recently, active attempts have been made to apply ceramic materials having excellent heat resistance, light resistance, and chemical resistance to the ink-jet printing process. In this study, ceramic ink was synthesized by combining ceramic pigments with UV curable polymer. 3D printability at various contact angles between ceramic ink and substrate was analyzed in detail. Rheological properties of the synthesized ceramic ink were optimized to meet the requirements of the ink-jet printing process, and the contact angle of UV curable ceramic ink was controlled through surface treatment of the substrate. The potential for additive manufacturing of ceramic material using ink-jet printing was investigated by analyzing the effect of contact angle control on ceramic ink droplets and their 3D printability.

Optimization of Aqueous Nano Ceramic Ink and Printing Characterization for Digital Ink-Jet Printing

  • Kwon, Jong-Woo;Sim, Hee-Seok;Lee, Jong-Heun;Hwang, Kwang-Taek;Han, Kyu-Sung;Kim, Jin-Ho;Kim, Ung-Soo
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.478-483
    • /
    • 2017
  • The advantage of ceramic ink-jet printing technology is the accurate and fast printing process of digital images for various products. For digital ink-jet printing applications, ceramic ink requires proper viscosity and surface tension, along with dispersion stability of the inorganic pigments. The purpose of this study is the formulation of an environment-friendly ceramic ink with a water-based system; using nano-sized $CoAl_2O_4$ pigment as a raw material, ink should have dispersion stability to prevent nozzle clogging during ink-jet printing process. In addition, the surface tension of the ceramic ink was optimized with the polysiloxane surfactant according to the surface tension requirement (20 - 45 mN/m) for ceramic ink-jet printing; by adjusting the viscosity with poly ethylene oxide, jetting behavior of the ceramic ink was investigated according to changes in the physical features through drop watcher measurement.

디지털 프린팅용 글래스-세라믹 복합 잉크 제조 및 특성 평가 (Formulation and Evaluation of Glass-Ceramic Ink for Digital Ink-jet Printing)

  • 권종우;이종흔;황광택;김진호;한규성
    • 한국재료학회지
    • /
    • 제27권11호
    • /
    • pp.583-589
    • /
    • 2017
  • Ceramic ink-jet printing has become a widespread technology in ceramic tile and ceramicware industries, due to its capability of manufacturing products on demand with various designs. Generally, thermally stable ceramic inks of digital primary colors(cyan, magenta, yellow, black) are required for ink-jet printing of full color image on ceramic tile. Here, we synthesized an aqueous glass-ceramic ink, which is free of Volatile organic compound(VOC) evolution, and investigated its inkjet printability. $CoAl_2O_4$ inorganic pigment and glass frit were dispersed in aqueous solution, and rheological behavior was optimized. The formulated glass-ceramic ink was suitably jetted as single sphere-shaped droplets without satellite drops. After ink-jet printing and firing processes, the printed glass-ceramic ink pattern on glazed ceramic tile was stably maintained without ink spreading phenomena and showed an improved scratch resistance.

Ceramic Ink-jet Printing on Glass Substrate Using Oleophobic Surface Treatment

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.75-80
    • /
    • 2016
  • Ink-jet printing has become a widespread technology with the society's increase in aesthetic awareness. Especially, ink-jet printing using glazed ceramic ink can offer huge advantages including high quality decoration, continuous processing, glaze patterning, and direct reproduction of high resolution images. Recently, ceramic ink-jet printing has been rapidly introduced to decorate the porcelain product and the ceramic tiles. In this study, we provide an effective method to apply ceramic ink-jet decorations on the glass substrates using a oleophobic coating with perfluorooctyl trichlorosilane. The ink-jet printed patterns were much clearer on the oleophobically coated glass surface than the bare glass surface. The contact angle of the ceramic ink was maximized to the value of $64.0^{\circ}$ on the glass surface, when it was treated with 1 vol% PFTS solution for 1 min. The effects of the printing conditions and firing process on the ink-jet printed patterns on the oleophobically coated glass were also investigated.

디지털 프린팅용 세라믹 잉크의 유약표면 인쇄적성 및 특성평가 (Printability of digital color ceramic ink on glazed surface of ink-jet printed ceramic tile)

  • 김진호;황광택;조우석;한규성
    • 한국결정성장학회지
    • /
    • 제27권5호
    • /
    • pp.256-262
    • /
    • 2017
  • $1000^{\circ}C$ 이상의 고온에서도 안정적인 발색 특성을 보이는 세라믹 잉크를 활용한 디지털 프린팅 기술은 우수한 내구성을 가지는 제품을 다양한 디자인을 적용하여 생산할 수 있는 친환경 공정이라는 장점으로 인해 최근 관심이 높아지고 있다. 특히 건축용 세라믹 타일 산업에서 잉크젯 프린팅 기술 도입을 통한 디지털 공정으로의 전환은 점점 가속화되고 있으며, 이와 관련된 프린팅 시스템 및 고온발색 세라믹 잉크에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 세라믹 타일의 표면 유약층에서 고온발색 세라믹 잉크의 인쇄적성을 분석하였다. 디지털 4원색인 Cyan, Magenta, Yellow, Black 색상의 고온발색 세라믹 잉크가 프린팅된 세라믹 타일의 표면 및 단면의 미세구조를 분석함으로써 세라믹 잉크의 종류에 따른 인쇄특성에 대해 비교하였다. 또한 고온 열처리 공정이 필수적으로 요구되는 세라믹 소재의 특성상 잉크젯 프린팅 후 세라믹 잉크 패턴의 열처리 공정에 따른 거동변화에 관하여 고찰하였으며, 세라믹 타일 유약층에서 세라믹 잉크의 인쇄적성은 미세구조 및 고온 소성 과정에 큰 영향을 받고 있음을 확인하였다.

Ink-jet 프린팅용 CoAl2O4 고화도 나노 무기 잉크 제조 및 프린팅 특성평가 (Synthesis and Characterization of CoAl2O4 Glazed Blue Ceramic Ink for Ink-Jet Printing)

  • 이기찬;윤종원;김진호;황광택;한규성
    • 한국재료학회지
    • /
    • 제24권2호
    • /
    • pp.73-80
    • /
    • 2014
  • Ink-jet printing technology has been widely attractive due to its facility for direct and fine printing on various substrates. Recent studies have focused on expanding the application of ink-jet printing technology from general consumer use and design companies to the prototype production of precision parts and parts manufacturing. The use of ink-jet printing technology in decorated tableware, tiles, and other ceramic products also has many advantages. The printing process is fast and can be adaptable to various kinds of objects because there is no direct contact point between the printer and the substrates to be printed. For application to ceramic product decoration, inks containing highly dispersed inorganic nano-pigments are required. Here we report the synthesis and characterization of blue $CoAl_2O_4$ nanopigment for ink-jet printing. Blue ceramic ink based on the obtained $CoAl_2O_4$ pigment was prepared by dissolving $CoAl_2O_4$ pigment in a mixed solution of ethylene glycol and ethanol with volume ratios of 7:3 and 8:2, respectively, to obtain the appropriate viscosity for ink-jet printing. The ink solution contained 15 wt% of $CoAl_2O_4$ pigment and Cetyltrimethyl ammonium bromide(CTAB) and Sodium dodecyl sulfate(SDS) as dispersive agents. The prepared blue ceramic ink was stably jetted and formed a sphere-shaped droplet from an ink-jet printer.

Effect of Marangoni flow on Surface Roughness and Packing Density of Inkjet-printed Alumina Film by Modulating Ink Solvent Composition

  • Jang, Hun-Woo;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Hwang, Hae-Jin
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.99-99
    • /
    • 2009
  • Two different micro-flows during the evaporation of ink droplets were achieved by engineering both surface tension gradient and compositional gradient across the ink droplet: (1) Coffee-ring generating flow resulting from the outward flow inside the ink droplet & (2) Marangoni flow leading to the circulation flow inside the ink droplet. The surface tension gradient and the compositional gradient in the ink droplets were tailored by mixing two different solvents with difference surface tension and boiling point. In order to create the coffee-ring generating flow (outward flow), a single-solvent system using N,N-dimethylformamide with nano-sized spherical alumina particles was formulated, Marangoni flow (circulation flow) was created in the ink droplets by combining N,N-dimethylformamide and fotmamide with the spherical alumina powders as a co-solvent ink system. We have investigated the effect of these two different flows on the formation of ceramic films by inkjet printing method, The packing density of the ceramic films printed with two different ink systems (single- and co-solvent systems) and their surface roughness were characterized. The dielectric properties of these inkjet-printed ceramic films such as dielectric constant and dissipation factor were also studied in order to evaluate the feasibility of their application to the electronic ceramic package substrate.

  • PDF

수계 세라믹 복합잉크의 유변학적 거동 및 잉크젯 프린팅 특성 (Rheological behavior and ink-jet printing characteristics of aqueous ceramic complex ink)

  • 권종우;이종흔;황광택;김진호;한규성
    • 한국결정성장학회지
    • /
    • 제28권3호
    • /
    • pp.123-129
    • /
    • 2018
  • 고온 열처리 후에도 안정적인 발색 효과를 가지는 디지털 4원색(cyan, magenta, yellow, black; CMYK)의 세라믹 잉크를 활용한 세라믹 잉크젯 프린팅 기술은 다양한 제품의 디지털 이미지를 정확하고 빠르게 인쇄 가능하다는 장점을 가지고 건축 및 세라믹 산업 분야에서 기존 공정을 빠르게 대체하고 있다. 세라믹 잉크젯 프린팅 기술은 무기 안료의 분산 안정성과 함께 적절한 점도와 표면 장력을 필요로 하며 기존에는 이러한 요구조건에 부합하는 유기용매 기반의 잉크가 주로 사용되어져 왔으나 최근에는 VOCs가 발생하지 않는 환경친화적인 세라믹 잉크 소재에 대한 관심이 커지고 있다. 본 연구에서는 $CoAl_2O_4$ cyan 발색 무기안료와 alumino boro-silicate 유리 분말을 사용하여 친환경적인 수계 세라믹 복합잉크를 합성하고, 수계 시스템에서의 유변학적 물성과 분산성을 최적화하여 잉크젯 프린팅 공정에서의 토출성 및 프린팅 특성에 대해 연구하였다. 그 결과, 합성된 수계 세라믹 복합잉크는 점도 및 표면장력 조절을 통해 satellite drop이 발생하지 않는 토출 거동을 보였으며, 유리 기판 위에서도 높은 접촉각으로 인해 잉크 퍼짐 현상이 최소화되며 프린팅되는 것을 확인하였다.

고화도 발색세라믹잉크를 이용한 잉크젯프린팅 도자타일 연구동향 (Recent Advances in the Ink-Jet Printing Ceramic Tile Using Colorant Ceramic-ink)

  • 김진호;노형구;김응수;조우석;최정훈;이용욱
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.498-503
    • /
    • 2013
  • Over the past decade, the feasibility of using ink-jet printing for the decoration of porcelain tiles has been explored, and significant advances have been made regarding the technologies underlying printing system and materials. An ink-jet printing system for porcelain tiles has many advantages compared with a conventional printing system, including the following: (1) it is a digital process; (2) it uses non-contact printing; (3) it allows random image generation; (4) it is a highly efficient process (reduced production cost); (5) it offers massive and continuous production; and (6) it uses inorganic pigment colorants. For these reasons, ink-jet printing systems for porcelain tiles have been commercialized and are at present rapidly spreading toceramics-leading countries such as Spain, Italy, China and Japan. We also developed a proprietary system involving a piezo-electric drop-on-demand method and an ink-circulation step. The resolution of this system is greater than 360 dpi after a heat treatment and the maximum printable width is 600 mm, even when setting the printing head unit with four digital colors (cyan, magenta, yellow, and black). In addition, we systematically developed ceramic colorant-containing inks and tile-printing technology applicable to our ink-jet printing system.