• Title/Summary/Keyword: ceramic

Search Result 14,846, Processing Time 0.039 seconds

A Study on the Characteristics of ALC Material with Melamine Resin (멜라민 수지를 혼합한 ALC 소재의 특성에 관한 연구)

  • Seo, Sung-Kwan;Chu, Yong-Sik;Song, Hun;Lee, Jong-Kyu;Im, Du-Hyuk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.595-599
    • /
    • 2011
  • ALC(Autoclaved Lightweight Concrete) is produced using quartz sand, lime and cement and water. And aluminum powder is used for blowing agent. ALC is manufactured by autoclave chamber under high-temperature and high-pressure. Generally, ALC is 1/4 levels lighter than concrete and mortar, because it has a lot of pores. So density of ALC is about 0.45~0.65 g/$cm^3$. But, ALC has a weakness, typically low strength, with its porous structure. So, it is necessary to excellent strength properties for extensive apply of ALC materials in high porosity. In this study, melamine resin was used to improve the strength characteristics of ALC materials. We performed compressive and bending strength measurements. Compressive strength of ALC with 2% melamine resin increased 26.88% than 'melamine-free' ALC. Also we performed functionality evaluation such as thermal conductivity, sound absorption, and flame-resistance.

Formaldehyde Adsorption and Physical Characteristics of Hydrothermal Reacted Panels Using Porous Materials (다공성 원료를 사용한 수열합성 패널의 물성과 포름알데히드 흡착 특성)

  • Im, Du-Hyuk;Chu, Yong-Sik;Song, Hoon;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.627-632
    • /
    • 2009
  • Formaldehyde emissions from the construct was harmful to human. Diatomite, bentonite and zeolite were used as porous materials for fabricating panels. Formaldehyde adsorption and physical characteristics of porous materials were investigated and hydrothermal method was applied to fabricate panels. Formaldehyde adsorption contents of panels with porous materials were higher than that of panel without porous materials. The panels with Cheolwon diatomite and Pohang zeolite showed excellent characteristics of Formaldehyde adsorption. These characteristics were caused by higher surface area and pore volume of porous materials. Formaldehyde adsorption contents were influenced by surface area and pore volume of panels. Correlation coefficient between surface area and Formaldehyde adsorption content of panels was 0.87. The panels with porous materials had higher strength than that without porous materials because of bridging role particles.

A Study on the Characteristics of Ceramic Ball Bearing (세라믹 볼베어링의 특성해석에 관한 연구)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.64-72
    • /
    • 1992
  • The recent trends of rotating machinery demand high speed and high temperature operation, and the bearing with new material is required to be developed. Ceramic, especially silicon nitride, have been receiving attention as alternative material to conventional bearing steel. Ceramic ball bearing offers major performance advantages over steel bearing, for instance, high speed, maginal lubrication, high temperature, improved corrosion resistance and nonmagnetic capabilities etc.. In this paper, the mechanical characteristics of ceramic ball bearing (hybrid ceramic bearing and all ceramic bearing) were investigated, and the characteristics of ceramic bearing were compared with that of steel bearing. Deep groove ball bearing 6208 was taken the object of analysis. The main results of analysis were followings: the radial stiffness of hybrid and all ceramic bearing were 112% and 130% that of steel bearing, and the axial stiffness of all ceramic bearing was 110% that of steel bearing. According as rotating speed was up, the ball load, the contact angle, the contact stress and the spin-to-roll ratio between ball and raceway of ceramic bearing were far smaller than these of steel bearing. And there was not a significant difference between the minimum film thickness of ceramic bearing and steel bearing. It is expected that this research is contributed to enhanced fundamental technology for the practical applications of ceramic ball bearing.

Fabrication of Ceramic-based Passive Mixers for Microfluidic Application by Thick Film Lithography (후막리소그라피를 이용한 세라믹기반의 미세유체소자용 수동형 혼합기의 제조)

  • Choi, Jae-Kyung;Yoon, Young-Joon;Lim, Jong-Woo;Kim, Hyo-Tae;Koo, Eun-Hae;Choi, Youn-Suk;Lee, Jong-Heun;Kim, Jong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.739-743
    • /
    • 2008
  • Microfluidic device can be applied in a wide range of chemical and biological technology. In this paper, ceramic-based T-type passive mixers for microfluidic applications were fabricated by LTCC process combined with thick film photolithography. The base ceramic material in thick film was amorphous cordierite $((Mg,Ca)_2Al_4Si_5O_{18})$ and photoimageable polymers were added to give a photosensitivity. Two types of passive mixer, which showed the channel width of 1.0 mm and $200{\mu}m$, respectively, were designed considering mixing efficiency in the channel and their microfluidic properties were discussed in detail.

Characteristics of Carbon Tetrafluoride Plasma Resistance of Various Glasses

  • Choi, Jae Ho;Han, Yoon Soo;Lee, Sung Min;Park, Hyung Bin;Choi, Sung Churl;Kim, Hyeong Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.700-706
    • /
    • 2016
  • Etch rate, surface roughness and microstructure as plasma resistance were evaluated for six kinds of oxide glass with different compositions. Borosilicate glass (BS) was found to be etched at the highest etch rate and zinc aluminum phosphate glass (ZAP) showed a relatively lower etch rate than borosilicate. On the other hand, the etching rate of calcium aluminosilicate glass (CAS) was measured to be similar to that of sintered alumina while yttrium aluminosilicate glass (YAS) showed the lowest etch rate. Such different etch rates by mixture plasma as a function of glass compositions was dependent on whether or not fluoride compounds were formed on glass and sublimated in high vacuum. Especially, in view that $CaF_2$ and $YF_3$ with high sublimation points were formed on the surface of CAS and YAS glasses, both CAS and YAS glasses were considered to be a good candidate for protective coating materials on the damaged polycrystalline ceramics parts in semi-conductor and display processes.

Effects of Viscosity on Dispersion Stability of Nano CoAl2O4 Ceramic Ink

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.497-501
    • /
    • 2015
  • Inkjet printing is a widespread technology, offering advantages such as high-quality decoration, a continuous process, and the accurate direct reproduction of patterns or pictures. In inkjet printing technology, the dispersion stability of ceramic ink is one of the most important factors. In this study, the dispersion stability of blue $CoAl_2O_4$ ink for ceramic inkjet printing is systematically investigated. Blue $CoAl_2O_4$ pigment was synthesized by a solid-state reaction and then milled to less than 300nm in size. In order to investigate the influence of the viscosity on the dispersion stability, two types of $CoAl_2O_4$ ceramic inks (termed here Blue L and Blue H) were prepared using different volume ratios of ethylene glycol and ethanol. The Blue L and Blue H ink solutions contained cetyltrimethylammonium bromide(CTAB) as a dispersive agent. The viscosity, surface tension and jetting stability of the $CoAl_2O_4$ ceramic inks were analyzed using a rheometer, a surface tension meter and a dropwatcher. The dispersion stability of the $CoAl_2O_4$ ceramic ink was investigated by a multiple light-scattering method. Blue H, a ceramic ink with higher viscosity, showed much better dispersion stability than the Blue L ceramic ink.

Influence of Fly Ash Addition on Properties of Ceramic Wall Tiles (플라이애시 첨가에 따른 세라믹 벽타일 소지의 물성변화)

  • Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2017
  • Recently, there have been many efforts to establish suitable processes for recycling fly ash, which is produced in thermal power plants and which poses serious environmental problems. Use of fly ash as a major ingredient of ceramic tiles can increase fly ash utilization, as well as reduce the cost of raw materials in ceramic tile production. In this study, the effects of fly ash addition on ceramic tile properties such as bending strength, water absorption and porosity were investigated. A manufacturing process of ceramic tile was developed for utilization of fly ash with high carbon content. In this approach, it is important to hold the ceramic tiles at a temperature that is sufficient for carbon oxidation, before the pores supplying oxygen to the inside of the ceramic tile are sealed. Ceramic wall tiles were manufactured with 0-40wt% of fly ash addition. The water absorption and porosity of the fired body were slightly changed with increasing fly ash content up to 30wt% and decreased with greater amounts of fly ash addition. The bending strength of ceramic tile including 10wt% fly ash increased, reaching a level comparable to that of ceramic tile without fly ash.

Fabrication and Characterization of La2Zr2O7/YSZ Double-Ceramic-Layer Thermal Barrier Coatings Fabricated by Suspension Plasma Spray (서스펜션 플라즈마 용사법을 이용한 La2Zr2O7/YSZ 2층세라믹 열차폐코팅의 제조와 특성평가)

  • Kwon, Chang-Sup;Lee, Sujin;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.315-321
    • /
    • 2015
  • Rare-earth zirconates, such as $La_2Zr_2O_7$ and $Gd_2Zr_2O_7$, have been investigated as one of the candidates for replacing conventional yttria-stabilized zirconia (YSZ) for thermal barrier coating (TBC) applications at higher turbine inlet temperatures. In this study, double-ceramic-layer (DCL) TBCs of YSZ 1st layer and $La_2Zr_2O_7$ top coat layer are fabricated by suspension plasma spray with serial liquid feeders. Microstructures, hardness profiles, and thermal durability of DCL-TBCs are also characterized. Fabricated DCL-TBCs of YSZ/$La_2Zr_2O_7$ exhibit excellent properties, such as adhesion strength (>25 MPa) and electrical thermal fatigue (~1429 cycles), which are comparable with TBCs fabricated by atmospheric plasma spray.

COMPARISON OF FRACTURE STRENGTH BETWEEN HYBRID-CERAMIC CROWN AND METAL-CERAMIC CROWN (Hybrid-Ceramic Crown과 금속 도재관의 파절강도 비교)

  • Ku Chul-Whoi;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.14-24
    • /
    • 2001
  • The purpose of this study was to compare the fracture strengths and the fracture patterns of several hybrid-ceramic crowns and metal-ceramic crown. Ten crowns were constructed for each group according to the manufacturer's instruction. Removable template of silicone rubber impression material was used for standardization of each crowns. Each crown was cemented on a metal die with hybrid glass ionomer cement. All crowns cemented were stored in distilled water, $36^{\circ}C$ for 24 hours prior to loading in an universal testing machine. The load was directed at 130 degrees the long axis of metal die. The fracture strengths were measured and the fracture patterns were observed. The following results were obtained from this study 1. The mean fracture strengths of $Artglass^{(R)}$, $Sculpture^{(R)}$ and $Targis^{(R)}$ were $57.5{\pm}9.5Kgf,\;62.7{\pm}12.2Kgf$ and $60.2{\pm}10.1Kgf$ respectively. There was no significant difference among each hybrid ceramic crown group. 2. The toad required to fracture hybrid-ceramic crowns was significantly smaller than metal-ceramic crowns($131.7{\pm}22.0Kgf$). 3. In the metal-ceramic crowns, labial porcelain detached partially from porcelain-metal junction of proximal side by load. 4. Hybrid-ceramic crowns showed a simple fracture pattern that fracture line began at the loading area and extended through proximal surface, perpendicular to the margin. The crown was separated into two parts of labial side and lingual side. Above results revealed that three kinds of the hybrid-ceramic crowns used in this study must have careful application in clinical use since the strength of hybrid-ceramic crown was lower(about 1/2) than that of metal-ceramic crown.

  • PDF

Trend of Ceramic Materials Technology for Beauty-care (뷰티케어용 세라믹소재기술 동향)

  • Chang, Jeong Ho
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.302-308
    • /
    • 2018
  • This work reported the trends of bioceramic materials for beauty-care applications with the several represent examples - tone-up, sun-care and anti-pollution cosmetics. The development of cosmetic techniques was discussed and reviewed with various ceramic hybrid materials. Moreover, we also reported the preparation and application of functional cosmetics with silicified liposome particles as a good make-up material for controlled release with natural compounds. The homogeneous loading and highly controlled-release formulation with porous and silicified ceramic liposome ceramic materials were discussed.