• 제목/요약/키워드: cepstrum

검색결과 274건 처리시간 0.021초

큐프렌시 영역 해석을 통한 드라이브 트레인 결함 분석 (Fault Analysis of the Wind Turbine Drive Train in the Quefrency Region)

  • 박용희;씨웨이;박현철
    • 신재생에너지
    • /
    • 제9권3호
    • /
    • pp.5-13
    • /
    • 2013
  • In the previous research, dynamic results have been analyzed in the time and frequency regions. Time and frequency region can be transformed by the Fourier transform. This transform is very useful about analyzing system behaviors. However, because of coupling, it cannot give clear results in the real system including lots of defects. In this paper, we introduced the analysis based on quefrency region to represent physical means clearly from complicated results. We simulated the drive train system which has defects, and compared between frequency and quefrency region to show its excellence. To do this process, We established mathematical model. The equation of motion was derived by the Lagrange equation and constraint equations. The constraint equation included relationships about gear mesh, flexibility of shaft. About numerical analysis, the Newmark beta method was used to get results. And FFT (Fast Fourier Transform) which converts results from time domain to frequency, qufrequency was used.

SVM음성인식기 구현을 위한 강인한 특징 파라메터 (Robust Feature Parameter for Implementation of Speech Recognizer Using Support Vector Machines)

  • 김창근;박정원;허강인
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.195-200
    • /
    • 2004
  • 본 논문은 두 가지 비교 실험을 통하여 효과적 음성인식 시스템을 제안한다. 분별적 이진 패턴 분류기인 SVM(Support Vector Machines)은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있다. 본 논문에서는 학습데이터 수에 따른 HMM(Hidden Markov Model)과 SVM의 인식 성능을 비교하고, 최적의 특징 파라메터를 선택하기 위해 SVM을 이용하여 주성분해석과 독립성분분석을 적용하여 MFCC(Mel Frequency Cepstrum Coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 SVM은 HMM에 비해 적은 학습데이터에서도 높은 인식 성능을 보여주었고, 독립성분분석에 의한 특징 파라메터가 특징 공간상에서의 높은 선형 분별성에 의해 다른 특징 파라메터보다 인식 성능에서 우수함을 확인 할 수 있었다.

변형된 Dynamic Averaging 방법을 이용한 단독어인식 (Isolated Word Recognition using Modified Dynamic Averaging Method)

  • 정의봉;고영혁;이종악
    • 한국음향학회지
    • /
    • 제10권2호
    • /
    • pp.23-28
    • /
    • 1991
  • 본 논문을 특정화자에 대한 단독어 음성 인식에 대한 연구이다. 우리는 표준패턴으로서 변형된 dynamic linear averaging 방법을 이용한 DTW 음성 인식 시스템을 제안한다. 57개의 모든 도시명이 인식 대상 어휘로 선정되었고 12차 LPC cepstram 계수를 특징계수로 사용하였다. 이 논문은 표준패턴으로 변형된 dynamic linear averaging 방법을 이용하여 인식 실험을 한것 이외에도 같은 데이터 같은 조건상에서 causal 방법과 dynamic averaging방법, linear averaging방법, clustering 방법을 이용하여 실험하였다. 실험결과로 변형시킨 dynamic linear averaging 방법을 이용한 DTW 음성인식이 97.6%로 가장 좋은 인식율을 보였다.

  • PDF

인공지능 기법에 의한 콘크리트 강도 추정 (Estimation of Concrete Strength Based on Artificial Intelligence Techniques)

  • 김세동;신동환;이영석;노승용;김성환
    • 한국음향학회지
    • /
    • 제18권7호
    • /
    • pp.101-111
    • /
    • 1999
  • 본 논문에서는 정확한 콘크리트 설계강도 분류를 위해 인공지능 기법에 바탕을 둔 증거축적방법에 의한 초음파신호의 패턴인식방법을 제안하였다. 이를 위해 우선 초음파신호의 특징파라메터로 분산, 영점교차횟수, 평균주파수, 자기회귀모델계수 및 선형 켑스트럼계수를 추출하였다. 추출된 특징파라메터들의 각각의 특성을 알아보고, 하나의 특징파라메터로 설계강도의 정확한 분류가 어렵다는 것을 보였다. 이러한 문제점을 해결하기 위하여 추출된 다수의 특징파라메터들을 이용하여 설계강도 분류를 증거축적방법을 통해 수행하였다. 또한, 이 증거축적방법을 콘크리트 패턴인식에 적용하기 위해 퍼지매핑 함수를 도입하였다. 본 논문에서 제안한 알고리즘이 다수의 특징파라메터들을 효율적으로 이용하여 92%의 패턴인식률을 보였으며, 이는 기존의 패턴 분류 알고리즘보다 콘크리트 설계강도를 보다 정확하게 분류함을 확인하였다.

  • PDF

화자확인에서 특징벡터의 순시 정보와 선형 변환의 효과적인 적용 (Effective Combination of Temporal Information and Linear Transformation of Feature Vector in Speaker Verification)

  • 서창우;조미화;임영환;전성채
    • 말소리와 음성과학
    • /
    • 제1권4호
    • /
    • pp.127-132
    • /
    • 2009
  • The feature vectors which are used in conventional speaker recognition (SR) systems may have many correlations between their neighbors. To improve the performance of the SR, many researchers adopted linear transformation method like principal component analysis (PCA). In general, the linear transformation of the feature vectors is based on concatenated form of the static features and their dynamic features. However, the linear transformation which based on both the static features and their dynamic features is more complex than that based on the static features alone due to the high order of the features. To overcome these problems, we propose an efficient method that applies linear transformation and temporal information of the features to reduce complexity and improve the performance in speaker verification (SV). The proposed method first performs a linear transformation by PCA coefficients. The delta parameters for temporal information are then obtained from the transformed features. The proposed method only requires 1/4 in the size of the covariance matrix compared with adding the static and their dynamic features for PCA coefficients. Also, the delta parameters are extracted from the linearly transformed features after the reduction of dimension in the static features. Compared with the PCA and conventional methods in terms of equal error rate (EER) in SV, the proposed method shows better performance while requiring less storage space and complexity.

  • PDF

Harmonic 분산값 최소화 알고리즘에 의한 주파수 영역 평탄화 기법 (The Technique of Spectrum Flattening by Algorithm for Minimized Harmonics Variance Value)

  • 민소연;김영규
    • 한국산학기술학회논문지
    • /
    • 제11권9호
    • /
    • pp.3558-3562
    • /
    • 2010
  • 음성신호처리 분야에 있어서 정확한 기본주파수(피치)를 검출하는 것은 매우 중요하다. 그러나 포만트의 영향과 천이 진폭의 영향으로 인하여 음성신호로부터 정확한 피치를 검출하는 것은 매우 어렵다. 따라서 본 논문에서는 음소의 천이나 변동의 영향이 적은 주파수 영역에서의 하모닉스 분산값 최소화 알고리즘을 통해 스펙트럼을 평탄화 하여 피치를 검출하는 방법에 대하여 연구하였다. 실험결과에서는 제안한 방법이 기존의 방법인 LPC법, 켑스트럼법과 비교하여 평탄화 특성이 어느 정도의 우수성을 보이는지를 평가하였다. 또한 각각의 방법을 적용하여 기본주파수를 검출한 결과를 비교함으로써 제안한 방법이 우수함을 입증하였다.

음성인식을 위한 주파수 부대역별 효과적인 특징추출 (Effective Feature Extraction in the Individual frequency Sub-bands for Speech Recognition)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.598-603
    • /
    • 2003
  • 본 논문에서는 주파수 부대역마다 최적의 특징추출을 위해서, 음성인식률을 기준으로 최적의 방법을 선택한다. 다중대역 음성인식 접근을 사용하여 각기 다른 주파수 영역에서 특징벡터를 독립적으로 추출함으로써 부대역별로 다른 특징추출 방법을 적용할 수 있었다. 저주파 대역의 음성은 비교적 스펙트럼의 구조가 명확하므로 전극모델을 사용하는 것이 효과적이었고, 고주파 대역에서는 비모수적인 변환방법인 이산 코사인 변환을 사용한 켑스트럼이 효과적이었다. 부대역별로 효과적인 특징추출 방법을 사용함으로써, 각 주파수 부대역에 포함된 음성인식을 위한 언어정보를 보다 효과적으로 추출할 수 있었다. 음성인식 실험결과, 제안한 방법은 전대역 특징추출보다 우수한 성능을 나타내었다.

차량 주행 상태에서 허브 베어링 이상을 진단할 수 있는 장치 개발 (Development of Diagnosis System for Hub Bearing Fault in Driving Vehicle)

  • 임종순;박지헌;김진용;윤한수;조용범
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.72-77
    • /
    • 2011
  • In this paper, we propose effective diagnosis algorithm for hub bearing fault in driving vehicle using acceleration signal and wheel speed signal measured in hub bearing unit or knuckle. This algorithm consists of differential, envelope and power spectrum method. We developed diagnosis system for realizing proposed algorithm. This system consists of input device including acceleration sensor and wheel speed sensor, calculation device using Digital Signal Processor (DSP) and display device using Personal Digital Assistant (PDA). Using this diagnosis system, a driver can see hub bearing fault(flaking) from the vibration in driving vehicle. With early repairing, he can keep good ride feeling and prevent accident of vehicle resulting from hub bearing fault.

잡음환경에 강인한 HMM기반 화자 확인 시스템에 관한 연구 (Speaker Verification System Based on HMM Robust to Noise Environments)

  • 위진우;강철호
    • 한국음향학회지
    • /
    • 제20권7호
    • /
    • pp.69-75
    • /
    • 2001
  • 화자확인에서 화자내 변이, 잡음환경, 그리고 학습환경과 인식 환경의 불일치는 화자확인 시스템이 실용화될 수 없는 가장 큰 원인이다. 본 연구에서는, 실제 환경에 강인한 화자 확인 시스템의 구현에 초점을 맞추어 음성 전처리 과정인 잡음환경에 강인한 끝점추출 알고리즘, 잡음제거 및 마이크특성 보상기법, LPG(Linear Predictive Coefficient)켑스트럼 가중치에 의한 화자간 변별력 향상 기법을 제안한다. 실험 결과, LPC잔차신호(residue)를 이용한 끝점추출 알고리즘을 사용한 경우 약 17.65% 가량의 끝점 추출 에러율을 향상시켰으며, 제안한 잡음제거 및 마이크특성 보상기법을 사용한 경우 다른 마이크 환경에서 화자 오인식율이 약 36.93% 가량 개선되었다. 또한, 제안한 LPC켑스트럼 가중치에 의한 화자간 변별력 향상 기법은 평균 화자 오인식율을 약 6.515% 향상시켰다.

  • PDF

단위 선택 기반의 음성 변환 (Feature Selection-based Voice Transformation)

  • 이기승
    • 한국음향학회지
    • /
    • 제31권1호
    • /
    • pp.39-50
    • /
    • 2012
  • A voice transformation (VT) method that can make the utterance of a source speaker mimic that of a target speaker is described. Speaker individuality transformation is achieved by altering three feature parameters, which include the LPC cepstrum, pitch period and gain. The main objective of this study involves construction of an optimal sequence of features selected from a target speaker's database, to maximize both the correlation probabilities between the transformed and the source features and the likelihood of the transformed features with respect to the target model. A set of two-pass conversion rules is proposed, where the feature parameters are first selected from a database then the optimal sequence of the feature parameters is then constructed in the second pass. The conversion rules were developed using a statistical approach that employed a maximum likelihood criterion. In constructing an optimal sequence of the features, a hidden Markov model (HMM) was employed to find the most likely combination of the features with respect to the target speaker's model. The effectiveness of the proposed transformation method was evaluated using objective tests and informal listening tests. We confirmed that the proposed method leads to perceptually more preferred results, compared with the conventional methods.