• Title/Summary/Keyword: cepstrum

Search Result 274, Processing Time 0.02 seconds

A Study on the Diagnosis of Laryngeal Diseases by Acoustic Signal Analysis (음향신호의 분석에 의한 후두질환의 진단에 관한 연구)

  • Jo, Cheol-Woo;Yang, Byong-Gon;Wang, Soo-Geon
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.151-165
    • /
    • 1999
  • This paper describes a series of researches to diagnose vocal diseases using the statistical method and the acoustic signal analysis method. Speech materials are collected at the hospital. Using the pathological database, the basic parameters for the diagnosis are obtained. Based on the statistical characteristics of the parameters, valid parameters are chosen and those are used to diagnose the pathological speech signal. Cepstrum is used to extract parameters which represents characteristics of pathological speech. 3 layered neural network is used to train and classify pathological speech into normal, benign and malignant case.

  • PDF

A Study on the Pitch Alteration Technique by Subband Scaling in Speech Signal (서브밴드 스케일링에 의한 음성신호의 피치변경법에 관한 연구)

  • Kim, Young-Kyu;Bae, Myung-Jin
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.137-147
    • /
    • 2003
  • Speech synthesis can classify by synthesis way, that is waveform coding, source coding and mixture coding. Specially, waveform coding is suitable for high quality synthesis. However, it is not desirable by synthesis techniques of syllable or phoneme unit because it do not separate and handles excitation and formant part. Therefore, there is a need for pitch alteration method applied in synthesis by the rule in waveform coding. This study propose about pitch alteration method that use spectrum scaling after do to flatten spectra by subband linear approximation to minimize spectrum distortion. This paper show evaluation whether show excellency of some measure compared with LPC, Cepstrum, lifter function and method that propose. estimation method seeks distribution of each flattened signal and measured degree of flattened spectra Signal flattened is normalized, So that highest point amounts to zero, and distribution of signal ,whose average is zero, is calculated. this show result that measure the spectrum distortion rate to estimate performance of method that propose. The average spectrum distortion rate was kept below the average 2.12%, so the method that propose is superiors than existent method.

  • PDF

Noise Robust Speech Recognition Based on Noisy Speech Acoustic Model Adaptation (잡음음성 음향모델 적응에 기반한 잡음에 강인한 음성인식)

  • Chung, Yongjoo
    • Phonetics and Speech Sciences
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2014
  • In the Vector Taylor Series (VTS)-based noisy speech recognition methods, Hidden Markov Models (HMM) are usually trained with clean speech. However, better performance is expected by training the HMM with noisy speech. In a previous study, we could find that Minimum Mean Square Error (MMSE) estimation of the training noisy speech in the log-spectrum domain produce improved recognition results, but since the proposed algorithm was done in the log-spectrum domain, it could not be used for the HMM adaptation. In this paper, we modify the previous algorithm to derive a novel mathematical relation between test and training noisy speech in the cepstrum domain and the mean and covariance of the Multi-condition TRaining (MTR) trained noisy speech HMM are adapted. In the noisy speech recognition experiments on the Aurora 2 database, the proposed method produced 10.6% of relative improvement in Word Error Rates (WERs) over the MTR method while the previous MMSE estimation of the training noisy speech produced 4.3% of relative improvement, which shows the superiority of the proposed method.

Speech Recognition Using HMM Based on Fuzzy (피지에 기초를 둔 HMM을 이용한 음성 인식)

  • 안태옥;김순협
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.68-74
    • /
    • 1991
  • This paper proposes a HMM model based on fuzzy, as a method on the speech recognition of speaker-independent. In this recognition method, multi-observation sequences which give proper probabilities by fuzzy rule according to order of short distance from VQ codebook are obtained. Thereafter, the HMM model using this multi-observation sequences is generated, and in case of recognition, a word that has the most highest probability is selected as a recognized word. The vocabularies for recognition experiment are 146 DDD are names, and the feature parameter is 10S0thT LPC cepstrum coefficients. Besides the speech recognition experiments of proposed model, for comparison with it, we perform the experiments by DP, MSVQ and general HMM under same condition and data. Through the experiment results, it is proved that HMM model using fuzzy proposed in this paper is superior to DP method, MSVQ and general HMM model in recognition rate and computational time.

  • PDF

A Study on Speech Recognition by One Stage MSVQ/DP (One stage MSVQ/DP를 이용한 음성 인식에 관한연구)

  • Jeoung, Eui-Bung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.5-12
    • /
    • 1994
  • This paper proposes One Stage MSVQ/DP method for word recognition system university administration branch names are selected for the recognition experiment and 10 LPC cepstrum coefficients is used as the feature parameter. Besides the speech recognition experiments by proposed method, for comparision with it, we perform the experiments on the same data by Level Building DTW and One Stage DP method. The Recognition rates with the LBDTW and the One Stage method are $83.3\%$ and $87.5\%$, but the recognition rate with the proposed method is $91.6\%$.

  • PDF

A Study on the Implementatin of Vocalbulary Independent Korean Speech Recognizer (가변어휘 음성인식기 구현에 관한 연구)

  • 황병한
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.60-63
    • /
    • 1998
  • 본 논문에서는 사용자가 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경이 가능한 가변어휘 인식시스템에 관하여 기술한다. 가변어휘 음성인식에서는 미리 구성된 음소모델을 토대로 인식대상 어휘가 결정되명 발음사전에 의거하여 이들 어휘에 해당하는 음소모델을 연결함으로써 단어모델을 만든다. 사용된 음소모델은 현재 음소의 앞뒤의 음소 context를 고려한 문맥종속형(Context-Dependent)음소모델인 triphone을 사용하였고, 연속확률분포를 가지는 Hidden Markov Model(HMM)기반의 고립단어인식 시스템을 구현하였다. 비교를 위해 문맥 독립형 음소모델인 monophone으로 인식실험을 병행하였다. 개발된 시스템은 음성특징벡터로 MFCC(Mel Frequency Cepstrum Coefficient)를 사용하였으며, test 환경에서 나타나지 않은 unseen triphone 문제를 해결하기 위하여 state-tying 방법중 음성학적 지식에 기반을 둔 tree-based clustering 기법을 도입하였다. 음소모델 훈련에는 ETRI에서 구축한 POW (Phonetically Optimized Words) 음성 데이터베이스(DB)[1]를 사용하였고, 어휘독립인식실험에는 POW DB와 관련없는 22개의 부서명을 50명이 발음한 총 1.100개의 고립단어 부서 DB[2]를 사용하였다. 인식실험결과 문맥독립형 음소모델이 88.6%를 보인데 비해 문맥종속형 음소모델은 96.2%의 더 나은 성능을 보였다.

  • PDF

On a Pitch Alteration Technique by Cepstrum Analysis of Flatten Excitation Spectrum (평탄화된 여기 스펙트럼에서 켑스트럼 피치 변경법에 관한 연구)

  • 조왕래;함명규;배명진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.8
    • /
    • pp.82-87
    • /
    • 1998
  • 음성합성은 합성방식에 따라 파형부호화법, 신호원부호화법, 혼성부호화법으로 분류 할 수 있다. 특히 고음질 합성을 위해서는 파형부호화를 이용한 합성방식이 적합하다. 그렇 지만, 파형부호화를 이용한 합성법은 여기 성분과 여파기 성분을 분리하지 않고 처리하기 때문에 음절단위나 음소단위의 합성기법으로는 바람직하지 못하다. 따라서 파형부호화법을 규칙에 의한 합성에 적용되도록 음원피치를 변경시키기 위한 피치 변경법이 필요하게 된다. 본 논문에서는 스펙트럼 왜곡을 최소화하기 위해 켑스트럼의 성질을 이용하여 피치를 변경 하는 방법에 대하여 제안하였다. 이 방법은 주파수영역상에서 여기 스펙트럼과 여파기 스펙 트럼을 분리하여 여기 스펙트럼을 여기 켑스트럼으로 변환한 후 영값 삽입이나 삭제에 의해 피치를 변경하고 스펙트럼영역에서 피치 변경된 스펙트럼을 재구성하는 기법을 적용하였다. 제안한 방법의 성능을 평가하기 위해 스펙트럼 왜곡율을 측정하여 본 결과 평균 스펙트럼 왜곡율은 평균 2.29%이하로 유지되었으며 주관적인 음질도 평균 3.74로 우수하였다.

  • PDF

Speech Recognition in Noisy Environments using Wiener Filtering (Wiener Filtering을 이용한 잡음환경에서의 음성인식)

  • Kim, Jin-Young;Eom, Ki-Wan;Choi, Hong-Sub
    • Speech Sciences
    • /
    • v.1
    • /
    • pp.277-283
    • /
    • 1997
  • In this paper, we present a robust recognition algorithm based on the Wiener filtering method as a research tool to develop the Korean Speech recognition system. We especially used Wiener filtering method in cepstrum-domain, because the method in frequency-domain is computationally expensive and complex. Evaluation of the effectiveness of this method has been conducted in speaker-independent isolated Korean digit recognition tasks using discrete HMM speech recognition systems. In these tasks, we used 12th order weighted cepstral as a feature vector and added computer simulated white gaussian noise of different levels to clean speech signals for recognition experiments under noisy conditions. Experimental results show that the presented algorithm can provide an improvement in recognition of as much as from $5\%\;to\;\20\%$ in comparison to spectral subtraction method.

  • PDF

Speech Recognition System for Home Automation Using DSP (DSP를 이용한 홈 오토메이션용 음성인식 시스템의 실시간 구현)

  • Kim I-Jae;Kim Jun-sung;Yang Sung-il;Kwon Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.171-174
    • /
    • 2000
  • 본 논문에서는 홈 오토메이션 시스템을 음성인식을 도입하여 설계하였다. 많은 계산량과 방대한 양의 데이터의 처리를 요구하는 음성인식을 DSP(Digital Signal Processor)를 통하여 구현해 보고자 본 연구를 수행하였다. 이를 위해 실시간 끝점검출기를 이용하여 추가의 입력장치가 필요하지 않도록 시스템을 구성하였다. 특징벡터로는 LPC로부터 유도한 10차의 cepstrum과 log 스케일 에너지를 이용하였고, 음소수에 따라 상태의 수를 다르게 구성한 DHMM(Discrete Hidden Marcov Model)을 인식기로 사용하였다. 인식단어는 가정 자동화를 위하여 많이 쓰일 수 있는 10개의 단어를 선택하여 화자 독립으로 인식을 수행하였다. 또한 단어가 인식이 되면 인식된 단어에 대해서 현재의 상태를 음성으로 알려주고 이에 대해 자동으로 실행하도록 시스템을 구성하였다.

  • PDF

A Study on the Speech Recognition Moduleas Design Using HMM Speech Recognition Algorithm (HMM(Hidden Markov Model) 음성인식 알고리즘을 이용한 효율적인 음성인식 모듈 개발 설계에 관한 연구)

  • 김정훈;류홍석;강재명;강성인;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.337-340
    • /
    • 2002
  • 본 논문에서는 휠체어 시스템에 화자 독립 고립단어 인식을 위한 임베디드 시스템 설계에 관한 내용을 서술한다. 실제 환경에서는 잡음이 포함되어 있어 인식률을 저하시키므로, 잡음을 제거하는 방식 중 가장 간단한 방식인 스펙트럼 차감법(Spectral subtraction method)을 사용하여 잡음을 제거했다 전처리 단계에서는 12차 LPC&Cepstrum 방식을 사용했고, 인식 알고리즘은 DHMM (Discrete Hidden Markov Model)을 전반부 인식기로 사용했다. 이 알고리즘을 적용하기 위해서는 데이터 간소화를 위해 벡터양자화(Vector Quantization) 처리가 전제되어야한다 또한 인식알고리즘은 인식률을 향상을 위해 후처리 인식기로 신경망(MLP:Multi-layer Perceptron)을 통해서 인식률을 향상시켰다 화자 독립 시스템에 맞는 인식 단어의 구성은 총 7개단어로 남녀 총 25명 목소리로 구성하였다. 그리고 하드웨어 구성은 32-bits floating point 방식인 TMS320C32를 적용했고, 메모리 부분은 4Mbyte로 설계를 했으며, 메인보드의 설계는 현재 완성 단계에 있다.