• Title/Summary/Keyword: centrifuge tests

Search Result 223, Processing Time 0.021 seconds

A Study on Estimation of Bearing Capacity of Sand Compaction Pile by Centrifuge Model Tests (원심모형실험에 의한 모래다짐말뚝의 지지력 산정식 연구)

  • Yoo, Nam-Jae;Hong, Young-KiI;Jun, Sang-Hyun;Kim, Kyung-Soo
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.121-130
    • /
    • 2007
  • Centrifuge model tests were performed to find appropriate equations proposed previously of estimating the bearing capacity of the composite clayey soil reinforced with sand compaction pile. Model tests were carried out with changing the replacement ratio of SCP (20%, 40%, 70%), contents of fine materials (5%, 10%, 15%) and ratio of treated width to loading width (1B, 2B, 3B). Test results about bearing capacity of the composite ground were obtained by performing the surcharge load tests with measurements of applied loads and vertical displacement. Bearing capacities against bulging and shear failures were estimated by the existing equations. As results of comparing the estimated bearing capacity with experimental values the bearing capacities estimated by Greenwood's equation (1970) for bulging failure mode were similar to the test results.

  • PDF

Centrifuge Model Tests for the Slope Reinforcement Effect (사면 보강효과 확인을 위한 원심모형실험)

  • 박용원;김병일;박종호;홍성수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.521-528
    • /
    • 2002
  • This paper presents the results of centrifuge model tests on the reinforced slope by pressure grouting. Tests were performed to investigate the reinforcing effect of grouting. In the tests, slopes of scale factor 1/10 were used changing the space and number of reinforcing bar. Test results are as tile follows; 1. The reinforcing effect increase rapidly with reinforcement area ratio at low value of reinforcement area ratio. 2. At high reinforcement area ratio the increase ratio of reinforcing effect decrease. 3. At same reinforcement area ratio, the reinforcing effect of double reinforcing bar was larger than the single reinforcing bar due to arching effect.

  • PDF

Evaluation of Bearing Capacity of Piled Raft Foundation on OC Clay using Centrifuge and Numerical Modeling (원심모형 실험과 수치해석을 이용한 과압밀 지반에서의 piled raft 기초의 지지력 평가)

  • Park, Jin-Oh;Choo, Yun-Wook;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.376-387
    • /
    • 2009
  • Piled raft foundation is a geotechnical composite construction to support the superstructure by pile-soil-raft interaction. General conventional design for piled raft doesn't consider the contribution of a raft. This is very conservative and requires more piles to satisfy the factor of safety. It is important to evaluate the load sharing features of piled raft. In this research, this characteristics of piled raft evaluated using both centrifuge and numerical modelings. The ultimate bearing capacity of piled raft foundation was also evaluated and predicted through comparisons of ultimate bearing capacity of single pile (SP), unpiled raft (UR), freestanding pile group (FPG) and piled raft (PR). $\xi_{pr}$ and $\eta$ were determined by centrifuge model tests to simply evaluate the ultimate bearing capacity of piled raft and bearing capacity of piled raft was predicted using the calibrated numerical model based on the centrifuge tests and laboratory tests data.

  • PDF

Centrifuge tests for simulating the behavior of CFRD with increasing water level (수위 상승에 따른 CFRD(콘크리트 표면차수벽형 석괴댐)의 거동 모사 원심모형시험)

  • Seo, Min-Woo;Im, Eun-Sang;Kim, Yong-Seong;Ha, Ik-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.784-793
    • /
    • 2006
  • As the number of CFRD constructions increases, the necessity of an accurate assessment on its behavior also has been increasing accordingly. The performance of concrete faced rockfill dam (CFRD) under different water levels is greatly concerned by dam engineers and designers in the world. However, domestic research on CFRD design and construction has yet been insignificant. This study deals with three centrifuge model tests, mainly investigates the deformation of the concrete faced slabs with different face slab stiffness under different water levels. The prototype of a centrifugal model dam is half size of domestic CFRD dam. Detailed material preparation, model design, model set-up, model instrumentation and testing procedures are presented. In order to simulate the prototype concrete faced slab, three kinds of thin fiberglass plates with different thickness was adopted in the three model tests. The water level control facility was specially designed for this experiment to control the water level rise and drawdown during centrifuge flight. Although most of the results from the three model tests are satisfactory, it is also required that the centrifuge test results should be compared with those of numerical analysis and field measurements to analyze the centrifuge test results more in detail.

  • PDF

Numerical Analysis of Dynamic Centrifuge Model Tests Using an Effective Stress Model (유효응력모델을 이용한 동적 원심모형실험의 수치해석)

  • Park Sung-Sik;Kim Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • In this study an effective stress numerical procedure is used to assess the results of dynamic centrifuge tests under high effective stress. The centrifuge models consist of loose Nevada sand with an initial vertical effective stress of 380kPa at depth, and they are modeled as a one-dimentional soil column. Liquefaction occurred up to 37m or 22m at depth, and the onset of liquefaction triggering was opposite to the conventional liquefaction evaluation procedure. In other words, liquefaction occurs first at the top and propagates downward as shaking continues. The results observed in centrifuge tests are reasonably predicted by the effective stress model. It is noted that the degree of initial saturation and additional densification at depth arising from the application of the high acceleration field play a key role in capturing the results of dynamic centrifuge tests.

Numerical Analysis on the Behavior of the Earth Tunnel due to Supporting Methods (지보공법에 따른 토사터널의 거동에 관한 수치해석)

  • Kim, Jin-Tae;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.239-250
    • /
    • 2004
  • Numerical analysis were performed to investigate the stability and internal movement of tunnel located beneath the base of abutment of bridge according to the method of supporting tunnel. Two supporting methods of the multi-staged grouting method with steel pipes and the large diameter of pipe supporting method were used in the centrifuge model tests. The slip form of model lining, specially built to simulate the process of tunnel excavating under the condition of accelerated g-level, was used in the centrifuge model tests. Four centrifuge model tests were performed, changing the supporting methods of the multi-staged grouting method with steel pipes and the large diameter of pipe supporting method and the location of model abutment base of bridge. For internal displacement of tunnel, movements of the crown. The left and the right sides of spring line were measured during the proceeds of excavating tunnel in centrifuge model tests. Test results were compared with numerically estimated values of internal displacement of tunnel by using the commercially available FEM software of PENTAGON-3D. It was found that they were in good agreements and the large diameter of pipe supporting method was more stable than the multi-staged grouting method with steel pipes with respect to the internal movement of tunnel.

  • PDF

A Study on Behavior of Elastic Settlement of Coastal Structure on Sandy Ground (모래층 지반 안벽구조물의 탄성침하거동 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Jeon, Jin-Yong
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.201-208
    • /
    • 2007
  • This paper is research results of investigating the elastic settlement behavior of the coastal caisson structure built on the sandy deposit by comparing results of centrifuge model experiments and those of existing methods of estimating elastic settlement. Basic soil property tests such as specific gravity test, grain size distribution test and organic content test with disturbed soil sampled from the site were carried out. The centrifuge experiment of model satisfying the required design criteria was performed under 50 of artificial accelerated gravitational force condition. The Centrifuge model experimental results were compared and analyzed with the current methods of estimating settlement based on the elastic modulus obtained from the results of odeometer tests and empirical methods from literature reviews.

  • PDF

Reproduction of Piping Failure Due to the Permeable Layer Using Centrifuge Test (원심모형실험을 통한 전석층이 존재하는 제방에서의 파이핑 현상 모사)

  • Jin, Seok-Woo;Kim, Nam-Ryong;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.1-10
    • /
    • 2011
  • This paper simulates the piping effect, found levees with large difference in coefficient of permeability within the foundation such as the Gim-po Levee, via centrifuge model test which is a model test. We have also conducted a numerical analysis under the same conditions as the centrifuge model test to compare its results. First, we decided to use the centrifuge model based on the Gim-po Levee, and the tests were executed on a model levee with pore water pressure transducers. We have found that most of the water flows through the permeable layer and causes the piping effect. Via video camera footage, we have found that the piping effect occurred at the toe of the model levee. The characteristic of pressure head distribution, obtained from the pore water pressure transducers, also proves the occurrence of the piping effect. The numerical analysis results also showed the same results as the centrifuge model test. We have simulated the piping effect via centrifuge model test and believe that the centrifuge model test is viable for various tests, predictions and evaluation of the levee problems.

Monitoring of Fill Dams for Internal Defect via Centrifuge Model Tests (원심모형시험을 이용한 필댐 취약부 모니터링)

  • Choo, Yun Wook;Cho, Sung Eun;Shin, Dong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.37-47
    • /
    • 2012
  • In this study, three centrifuge tests were performed to evaluate the feasibility of three physical quantities for detecting internal defect of earth core fill dam: pore water pressure, temperature, and electrical resistance. For this purpose, the measurement system for pore water pressure, temperature and electrical resistance on centrifuge model dams was established. Three centrifuge tests included a fill dam without internal defect and two other dams with artificial internal defect in the core. The effectiveness of seepage monitoring was examined during the centrifuge test. Test results showed the applicability of monitoring techniques to detect internal defect by monitoring pore water pressure, temperature, and electrical resistance.

Centrifuge Model Experiments and Numerical Analyses on the Behaviour of Excavated Clayey Soil (점토굴착 사면의 거동에 관한 원심모형실험 및 수치해석)

  • Choi, Min Soo;Jeong, Gil-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.55-62
    • /
    • 2005
  • This paper is the results of experimental and numerical works on analyzing the geotechnical engineering behavior and characteristics of excavated clay slope formed by the method of excavated replacement which is one of treatments in soft soil ground. For the centrifuge model tests, models of excavated clay slope were prepared by remolding the marine clayey soil sampled from the field. Tests were performed with changing the slope to investigate the behavior of them. On the other hand, numerical analyses were carried out to analyze the change of safety factor against instability of slope with time. Changes of pore water pressure, shear strength and displacement were also investigated. As results of centrifuge model tests with slopes of 1:1.5 and 1:3 using the confining body of simulating the effect of excavation, for the case of 1:1.5, slope failure occurred right after remove the confining body whereas relatively small displacements within the range of 3.2mm, implying to maintain the stability of slope, were observed for the case of 1:3 slope. From the results of numerical analyses using the software of PLAXIS to investigate the stability of slope after excavation, the minimum safety factor against slope failure was 1.28 for the case of 1:3 slope. The further researches in the future are required with considerations of build up of static pore water pressures during acceleration of centrifuge, depth of excavation influencing the behavior of the slope and permeability of the slope since excavation of the slope was not simulated well resulted from the limitations of apparatus at the stage of excavation during the centrifuge tests.

  • PDF