• Title/Summary/Keyword: centrifuge model test

Search Result 197, Processing Time 0.028 seconds

Evaluation of Liquefaction Model using Dynamic Centrifuge Test (포화된 경사 사질토 지반의 액상화 수치모델 거동평가)

  • Lee, Jin-Sun;Lee, Sang-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.31-42
    • /
    • 2022
  • This study verified numerical analysis of the liquefaction phenomenon using LEAP-2017 international round-robin centrifuge test results. Dynamic centrifuge test is performed by applying a 1 Hz tapered sine wave to the model soil deposit, which was formed under a water table in a surface slope of 5° using Ottawa F-65 sand. A numerical model was made on a prototype scale and analyzed using the finite difference method in 2D and 3D conditions. The analyses were verified for acceleration and pore-water pressure histories with depth and residual displacement. Verification results revealed that all numerical liquefaction models agree reasonably with the test result for acceleration histories but not for pre-water pressure histories. Numerical analyses showed much smaller residual displacement than the centrifuge test. Thus, it is necessary to compare the results of numerical analysis with the centrifuge test performed by other institutes in the future.

Physical Modeling of Geotechnical Systems using Centrifuge

  • Kim, Dong-Soo;Kim, Nam-Ryong;Choo, Yun-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.194-205
    • /
    • 2009
  • In geotechnical engineering, the mechanical characteristics of soil, the main material of geotechnical engineering, is highly related to the confining stress. Reduced-scale physical modeling is often conducted to evaluate the performance or to verify the behavior of the geotechnical systems. However, reduced-scale physical modeling cannot replicate the behavior of the full-scale prototype because the reduced-scale causes difference of self weight stress level. Geotechnical centrifuges are commonly used for physical model tests to compensate the model for the stress level. Physical modeling techniques using centrifuge are widely adopted in most of geotechnical engineering fields these days due to its various advantages. In this paper, fundamentals of geotechnical centrifuge modeling and its application area are explained. State-of-the-art geotechnical centrifuge equipment is also described as an example of KOCED geotechnical centrifuge facility at KAIST.

  • PDF

Utilization of an Instructional Centrifuge Test for Teaching in Geotechnical Engineering(Focus on Slope Stability Model) (지반공학 분야에서 교육용 도구로서의 원심모형실험 활용법 (사면안정 모델을 중심으로))

  • Lee, Kang-Il;Kim, Tae-Hyung;Kim, Chan-Kee;Back, Won-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1372-1377
    • /
    • 2008
  • Recently, centrifuge tests have been widely used as tools in geotechnical engineering researches in domestic and foreign. However, the size of these centrifuge facilities is very large and thus the tests require for long time, high expense, and many labors. In this study, therefore, a small size of instructional centrifuge, which can conduct tests in a short period of time effectively, was introduced. This centrifuge facility introduced in here was developed for geotechnical engineering education for graduate and undergraduate students. The slope stability model having $65^{\circ}$ slope formed with clay was used to investigate the application of the instructional centrifuge by considering experimental procedures and results.

  • PDF

Appropriate Input Earthquake Motion for the Verification of Seismic Response Analysis by Geotechnical Dynamic Centrifuge Test (동적원심모형 시험을 이용한 부지응답해석 검증시 입력 지진의 결정)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.

Analysis of Earth Pressure Acting on Vertical Circular Shaft Considering Aching Effect (I) - A Study on Centrifuge Model Tests - (아칭효과를 고려한 원형수직터널의 토압 특성 분석 (I) - 원심모형실험 연구 -)

  • Kim, Kyoung-Yul;Lee, Dae-Soo;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.23-31
    • /
    • 2012
  • The purpose of this study is to analyze earth pressure acting on a circular shaft-tunnel considering arching effect by centrifuge modeling test on sands. The centrifuge testing method provides a way to model an in-situ stress state condition with a stress gradient within a laboratory specimen. A small-scale model of circular shaft-tunnel, which has a real diameter of 6.0 m and height of 15.0 m, was designed and tested twice under 75g-level. Additionally, an effect of excavation was presented by separating two segments of circular shaft wall to find behavioral properties and strength of earth pressure along with excavating ground. The test results were compared with those of the proposed earth pressure equation. The test results showed that earth pressure decreased by about 70% in comparison with existing two-dimensional earth pressure. This fact might be attributed to three-dimensional arching effects.

Behaviour of Consolidation in Dredged and Reclaimed Soil Considering the Effect of the Desiccation (건조효과를 고려한 준설매립토의 압밀거동)

  • Yoo, Nam-Jae;Park, Byung-Soo;Lee, Myung-woog;Lee, Joo-Won
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.93-100
    • /
    • 2000
  • This research is to investigate the self-weight consolidation settlement and desiccation shrinkage settlement of soft marine dredging clay by performing numerical and experimental works. Large column test were carried out investigate the consolidation settlement considering effect of the self-weight and desiccation shrinkage, and centrifuge model test was also carried out investigate self-weight consolidation settlement. Results of centrifuge model and large column experiments about changes of settlement with time were analyzed by using the numerical technique of explicit finite difference method considering effect of the self-weight and desiccation based on the finite strain consolidation theory. Centrifuge model test results were in relatively good agreements with analyzed results in terms of self-weight consolidation settlement with time. Large column test results showed quite different values from the numerically estimated one, carried by experimental conditions.

  • PDF

Model Test of Lining for Estimation of Tunnel Soundness (터널 건전도 평가를 위한 라이닝 모델실험)

  • Kim, Young Keun
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.59-71
    • /
    • 1999
  • Recently, many deformations in tunnel such as crack and leakage were occulted. Specially, the defects of tunnel lining have been a serious problem in safety and stability many repair works for maintenance in tunnel have been carried out. Therefore, it is necessary to estimate the structural cracking for countermeasure in deformed tunnel and to investigate on the characteristics of lining system and the soundness of tunnel. In this study model tests for tunnel lining were carried out using test apparatus and centrifuge, In the direct loading test, the prototype was Kyungbu high-speed railway tunnel and the scale is 1/10, and lining models were made of concrete. Test conditions included load conditions such as direction, shape and type, lining conditions such as single and double lining, thickness, and reinforcement. In centrifuge model test, the prototype was Seoul subway tunnel and the scale is 1/100, and lining models were made of aluminum and hydrostone. Test conditions included tunnel defects such as thickness shortage. behind cavity and longitudinal cracks, reinforcement methods such as epoxy, grouting and carbon sheet. From these model tests , the characteristics of deformation and failure for tunnel lining were estimated, and the structural behaviors of deformed lining and the effects of repair and reinforcement for tunnel lining were researched.

  • PDF

Centrifuge tests for simulating the behavior of CFRD with increasing water level (수위 상승에 따른 CFRD(콘크리트 표면차수벽형 석괴댐)의 거동 모사 원심모형시험)

  • Seo, Min-Woo;Im, Eun-Sang;Kim, Yong-Seong;Ha, Ik-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.784-793
    • /
    • 2006
  • As the number of CFRD constructions increases, the necessity of an accurate assessment on its behavior also has been increasing accordingly. The performance of concrete faced rockfill dam (CFRD) under different water levels is greatly concerned by dam engineers and designers in the world. However, domestic research on CFRD design and construction has yet been insignificant. This study deals with three centrifuge model tests, mainly investigates the deformation of the concrete faced slabs with different face slab stiffness under different water levels. The prototype of a centrifugal model dam is half size of domestic CFRD dam. Detailed material preparation, model design, model set-up, model instrumentation and testing procedures are presented. In order to simulate the prototype concrete faced slab, three kinds of thin fiberglass plates with different thickness was adopted in the three model tests. The water level control facility was specially designed for this experiment to control the water level rise and drawdown during centrifuge flight. Although most of the results from the three model tests are satisfactory, it is also required that the centrifuge test results should be compared with those of numerical analysis and field measurements to analyze the centrifuge test results more in detail.

  • PDF

Displacement Behavior of Tunnel under Bridge Abutment due to Supporting Systems (교량기초 하부에 위치한 터널의 지보방법에 따른 변위거동)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Seung-Ryul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.613-620
    • /
    • 2005
  • This research is experimental paper to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

Two-dimensional deformation measurement in the centrifuge model test using particle image velocimetry

  • Li, J.C.;Zhu, B.;Ye, X.W.;Liu, T.W.;Chen, Y.M.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.793-802
    • /
    • 2019
  • The centrifuge model test is usually used for two-dimensional deformation and instability study of the soil slopes. As a typical loose slope, the municipal solid waste (MSW) landfill is easy to slide with large deformation, under high water levels or large earthquakes. A series of centrifuge model tests of landfill slide induced by rising water level and earthquake were carried out. The particle image velocimetry (PIV), laser displacement transducer (LDT) and marker tracer (MT) methods were used to measure the deformation of the landfill under different centrifugal accelerations, water levels and earthquake magnitudes. The PIV method realized the observation of continuous deformation of the landfill model, and its results were consistent with those by LDT, which had higher precision than the MT method. The deformation of the landfill was mainly vertically downward and increased linearly with the rising centrifugal acceleration. When the water level rose, the horizontal deformation of the landfill developed gradually due to the seepage, and a global slide surface formed when the critical water level was reached. The seismic deformation of the landfill was mainly vertical at a low water level, but significant horizontal deformation occurred under a high water level. The results of the tests and analyses verified the applicability of PIV in the two-dimensional deformation measurement in the centrifuge model tests of the MSW landfill, and provide an important basis for revealing the instability mechanism of landfills under extreme hydraulic and seismic conditions.