• Title/Summary/Keyword: centrifugal melting process

Search Result 28, Processing Time 0.029 seconds

Characteristics of BSCCO Superconductor Tube Using Partial Melting Process (부분용융법을 이용한 BSCCO 초전도 튜브 특성)

  • 박용민;장건익
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.25-28
    • /
    • 2001
  • Bi-2212 HTS tube was fabricated by centrifugal forming process(CFP). As a variation of melt casting process(MCP) or centrifugal casting technique, the centrifugal forming process is a flexible method for manufacturing Bi-2212 bulk tubes and has been optimized to achieve smooth surface and uniform thickness. At this process, the slurry was prepared in the mixing ratio of 10:1 between Bi-2212 powder and binder and initially charged into the rotating mold under the speed of 300~450 rpm Heat-treatment was performed at the temperature ranges of 860 ~ $890^{\circ}C$ in air for partial melting. The HTS tube fabricated by centrifugal forming process at $890^{\circ}C$ under the rotating speed of 450 rpm was highly densified and the plate-like grains with more than 20$\mu$m were well oriented along the rotating axis. The measured Tc and Jc at 10K were around 85K and 3,000A/cm2 respectively.

  • PDF

Characteristics of Bi-2212 Superconductor Tube Depending on Heat-treatment Conditions (열처리 조건에 따른 Bi-2212 초전도 튜브의 특성)

  • 박용민;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.606-610
    • /
    • 2001
  • Bi-2212 HTS tube was fabricated by centrifugal forming and partial melting processes. Bi-2212 bulk tube has been optimized to achieve smooth surface and uniform thickness. The slurry was prepared in the mixing ratio of 10:1 between Bi-2212 powder and binder and initially charged into the rotating mold under the speed of 300~450 rpm. Heat-treatment was performed at the temperature ranges of 860~89$0^{\circ}C$ in air for partial melting. the HTS tube fabricated by centrifugal forming process at 89$0^{\circ}C$ under the rotating speed of 450 rpm was highly densified and the plate-like grains with more than 20${\mu}{\textrm}{m}$ were well oriented along the rotating axis. The measured Tc and J$_{c}$ at 10K on specimen heat treated at 89$0^{\circ}C$ was around 85 K and 1,200 A/$\textrm{cm}^2$ respectively.y.

  • PDF

Development of Centrifugal Forming Process for HTS Tube Fabrication (고온초전도체 튜브 제조를 위한 원섬 성형 공정 개발)

  • 정승호;장건익
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.98-100
    • /
    • 2002
  • We developed the Centrifugal Forming Process(CFP) for HTS tube fabrication. The self-designed equipment for CFP is devided into 3 main parts depending on its role and functions. the melting part by heating of high inductive frequency, centrifugal forming part for the tube and efficient microstructure control of Bi2212 phase and molding part for tube detachment after heat treatment. In this paper we will introduce self designed Centrifugal Forming Process for HTS tube fabrication and discuss about the results related mold materials in terms of high Tc superconductor.

  • PDF

Fabrication of Bi2212 superconductor by Centrifugal Forming Process (원심 성형법에 의한 고온초전도체 제조)

  • 정승호;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.503-506
    • /
    • 2002
  • BSCCO 2212 HTS was fabricated by CFP(centrifugal forming process). The powder was initially ground in the mixing ratio of 2:2::1:2 with 10% of SrSO$_4$. The temperature increased up to 1035$^{\circ}C$ and 1200$^{\circ}C$ for melting. The melt was poured into the preheated and rotating copper mould from 200 to 600$^{\circ}C$. The specimen was not broken by thermal impact when the melting temperature was over 1050$^{\circ}C$ and copper mould was preheated over 400$^{\circ}C$ for 30min. A tube type of specimen was annealed at 840$^{\circ}C$ or 860$^{\circ}C$ in oxygen atmosphere for 24hours. Typical microstructure was analyzed in terms of CFP parameters by XRD, SEM, and EDS and also superconducting characteristics were compared.

  • PDF

Fabrication of BSCCO Superconductor Tube for Current Lead Application (전류인입선 응용을 위한 BSCCO 초전도 튜브의 제조)

  • Choi, Jung-Suk;Jun, Byung-Hyuk;Hyun, Ok-Bae;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.103-107
    • /
    • 2009
  • $Bi_2Sr_2Ca_1Cu_2O_x$(BSCCO 2212) superconductors for current lead were fabricated by centrifugal melting process(CMP). BSCCO 2212 powder was melted at $1200^{\circ}\C$ in a resistance furnace using a Pt crucible and poured in a rotating cylindrical mold preheated at $550^{\circ}\C$ for 2 hour. The solidified BSCCO-2212 samples were heat-treated by partial melting process in oxygen atmosphere. The current-voltage curves at 77 K of the samples were obtained by transport measurement, and the microstructure was investigated by scanning electron microscope. The $J_c$ values at 77 K of the tubes partially melted at $840^{\circ}C,\;860^{\circ}C\;and\;880^{\circ}C$ were 492, 430 and 398 $A/cm^2$, respectively. It was observed that the plate-like grains in BSCCO 2212 tube was more developed in the sample heat-treated at $840^{\circ}C$. It was found that the critical current of the BSCCO 2212 samples was dependent on the partial melting schedule regarding the grain shape and size of the BSCCO 2212.

  • PDF

Fabrication of BSCCO Tube by Centrifugal Melting Process (원심 용융 성형법을 이용한 BSCCO 튜브 제조)

  • Kim Ki-Ik;Choi Jung Suk;Oh Sung Young;Jun Byung-Hyuk;Kim H.-R.;Hyun Ok-Bae;Kim Hyoung-Seop;Kim Chan-Joong
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 2005
  • Bi-22l2 tubes for fault current limiter (FCL) were fabricated by centrifugal melting process. $SrSO_4$ ($10\;wt.\;\%$) was added to Bi-2212 powder to lower the melting point of Bi-22l2 and to improve the mechanical properties. The BSCCO powder was completely melted at $1300\;^{\circ}C$ using the RF furnace and then poured into rotating steel mold. The steel mold, preheated at $450\;{\circ}C{\sim}550^{\circ}C$ for 2 hour was rotated at $1020{\sim}2520\;RPM$. The solidified BSCCO tube was cooled down to room temperature in the furnace for 48 hours and separated from the mold between Bi-2212 and the mold. $ZrO_2$ solution was used to separate it easily from the mold and Ag tape was attached in the mold inner wall of the mold to analysis electrical property. Bi-22l2 tube was often cracked when the cooling rate was high. BSCCO tubes with $70{\Phi}{\times}100\;mm,\;50{\Phi}{\times}100\;mm$ and $30{\Phi}{\times}150\;mm$ size were fabricated by centrifugal melting process. The $J_{c}s$ of tubes with $50{\Phi}{\times}100\;mm{\times}4.0\;t$ and $50{\Phi}{\times}100\;mm{\times}4.l\;t$ were 178 and $74.2\;A/cm^2$ at 77K, respectively. The processing condition for Bi-2212 tube fabrication was investigated using XRD and SEM analyses.

  • PDF

Manufactures of dental casting Co-Cr-Mo based alloys in addition to Sn, Cu and analysis of infrared thermal image for melting process of its alloys (Sn 및 Cu를 첨가한 치과 주조용 Co-Cr-Mo계 합금제조 및 용해과정 분석)

  • Kang, Hoo-Won;Park, Young-Sik;Hwang, In;Lee, Chang-Ho;Heo, Yong;Won, Yong-Gwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.141-147
    • /
    • 2014
  • Purpose: Dental casting #Gr I (Co-25Cr-5Mo-3Sn-1Mn-1Si), #Gr II (Co-25Cr-5Mo-5Cu-1Mn -1Si) and #Gr III (Co-25Cr-5Mo-3Sn-5Cu-1Mn-1Si) master alloys of granule type were manufactured the same as manufacturing processes for dental casting Ni-Cr and Co-Cr-Mo based alloys of ingot type. These alloys were analyzed melting processes with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer. Methods: These alloys were manufactured such as; alloy design, the first master alloy manufatured using vacuum arc casting machine, melting metal setting in crucible, melting in VIM, pouring in the mold of bar type, cutting the gate and runner bar and polishing. These alloys were put about 30g/charge in the ceramic crucible of high frequency induction centrifugal casting machine and heat, Infrared thermal image analyzer indicated alloys in the crucible were set and operated. Results: The melting temperatures of these alloys measuring infrared thermal image analyzer were decreased in comparison with remanium$^{(R)}$ GM 800+, vera PDI$^{TM}$, Biosil$^{(R)}$ f, WISIL$^{(R)}$ M type V, Ticonium 2000 alloys of ingot type and vera PDS$^{TM}$(Aabadent, USA), Regalloy alloys of shot type. Conclusion: Co-Cr-Mo based alloy in addition to Sn(#Gr I alloy) were decreased the melting temperature with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer.

Analysis of infrared thermal image for melting processes of Co-Cr-Mo based alloy using high frequency induction casting machine (치과용 고주파 주조기를 이용한 Co-Cr-Mo계 합금 용해과정의 적외선 열화상 분석)

  • Kang, Hoo-Won;Park, Young-Sik;Hwang, In;Lee, Chang-Ho;Heo, Yong;Won, Yong-Gwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.149-158
    • /
    • 2014
  • Purpose: Dental casting Co-Cr-Mo based alloys of five kinds of ingot type and two kinds of shot type were analyzed the melting processes with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer. Methods: When Co-Cr-Mo based alloys were put about 30g/charge in the ceramic crucible of high frequency induction centrifugal casting machine and heat, Infrared thermal image analyzer and IR thermometer indicated these alloys in the crucible were set and operated. Results: The melting temperatures of alloys measuring infrared thermal image analyzer were deviated ${\pm}10^{\circ}C$ compared to those of manufacturing company. On the other hand, the melting time of alloys were differently appeared with the shape of alloys(ingot and shot type). Conclusion: The melting temperatures of dental Co-Cr-Mo based alloys were measured the degree of $1,360{\sim}1410^{\circ}C$ and the heating time with the alloys of ingot and shot type were deviated ${\pm}10sec$.