• 제목/요약/키워드: central composite design model

Search Result 227, Processing Time 0.027 seconds

Optimization of Soybean Pudding Using Response Surface Methodology

  • Jung, Eun-Kyung;Joo, Na-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.6
    • /
    • pp.717-726
    • /
    • 2011
  • Response surface methodology (RSM) was performed in order to determine the optimal mixing conditions of different amounts of egg and sugar for the preparation of soybean pudding. The experiments were designed according to a central composite design by designating whole egg and sugar content as independent variables. Meanwhile, sweetness, Commission Internationale de I'Eclairage (CIE) color parameters (L*, a* and b* values), hardness, cohesiveness, springiness, and gumminess were response variables. Overall optimization, conducted by overlaying the contour plots under investigation, was able to determine the optimal range of dependent variables within which the 14 responses were simultaneously optimized. The point chosen as a representative of this optimal region corresponded to 50.00 g of whole egg and 31.66 g of sugar. Under these conditions, the model predicted L* value=80.03, a* value=-5.44, b* value=27.86, sweetness=21.23 ($^{\circ}Brix$), hardness=$25.45{\times}10^5$ (dyne/$cm^2$), cohesiveness=67.90 (%), springiness=46.20 (%), and gumminess=12.71 (g).

Optimization of the Addition of Jinuni Beans to Chocolate Using the Response Surface Methodology (쥐눈이콩 첨가량을 달리한 초콜릿 제조 조건의 최적화)

  • Joo, Na-Mi;Kim, Bo-Ram;Pyo, Seo-Jin
    • Journal of the Korean Dietetic Association
    • /
    • v.16 no.1
    • /
    • pp.13-21
    • /
    • 2010
  • The purpose of this study was to determine the optimal mixing conditions of different amounts of Jinuni beans and fresh cream for the preparation of Jinuni bean chocolate. An experiment was designed using the central composite design of the response surface, which required 10 experimental treatments including 2 replicates for the Jinuni bean and fresh cream. The compositional and functional properties of the treatments were measured and these values were applied to the mathematical model. A canonical form and perturbation plot showed the influence of each ingredient on the mixture products. The color value L (Lightness) decreased with an increase in the amount of added Jinuni bean but the color value a (redness) and color value b (yellowness) did not change. In addition, the hardness value increased with the addition of the Jinuni bean. The results of the sensory evaluation showed very significant differences in the values of the texture (p<0.01), taste (p<0.05), and overall quality (p<0.01). As a result, the optimum formulations as determined by the numerical and graphical methods were 27.98 g of Jinuni bean and 67.0 g of fresh cream.

Optimized Processing of Chicken Sausage Prepared with Turmeric (Curcuma longa L.) (강황분말 첨가 계육 소시지의 제조조건 최적화)

  • Yun, Eun A;Jung, Eunkyung;Joo, Nami
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.2
    • /
    • pp.204-211
    • /
    • 2013
  • The purpose of this study was to determine the optimal mixing conditions for two different amounts of turmeric (Curcuma longa L.) powder and olive oil for the processing of chicken sausage. The experiment was designed according to the central composite design of response surface methodology, with ten experimental points, including two replicates for turmeric powder and olive oil. The physicochemical and mechanical analysis of each sample, including water holding capacity, moisture content, lightness, redness, yellowness, hardness, chewiness, gumminess, and cohesiveness, showed significant differences. The results from sensory evaluations also showed very significant differences in color, flavor, tenderness, chewiness, and overall quality. The optimal formulation, calculated by numerical and graphical methods, was 1.89 g of turmeric powder and 9.77 g of olive oil. Under these conditions, the model predicted pH-6.01, salinity-0.20, WHC-94.88, $L^*$ value-61.13, $b^*$ value-37.45, hardness-$36.66{\times}10^2$ (N), springiness-8.70 (mm), chewiness-$26.88{\times}10^3$ ($N{\times}mm$).

Monitoring the Functional Properties of Pleurotus eryngii Extracts Using Response Surface Methodology

  • Oh, Hyun-In;Lim, Tae-Soo;Lee, Gee-Dong;Kim, Hyun-Ku
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.299-305
    • /
    • 2007
  • Response surface methodology was employed to optimize extraction conditions for finding the maximal functional properties of Pleurotus eryngii. Based on central composite design, the study plan was established with variations of microwave power (30-150 W), ethanol concentration (0-99.9%), and extraction time (1-9 min). Regression analysis was applied to obtain a mathematical model. A maximal yield of 47.86% was obtained when the microwave power, ethanol concentration, and extraction time were set at 122.7 W, 42.14%, and 8.3 min, respectively. A maximized electron donating ability of 93.32% was found under the following conditions: a microwave power of 144.19 W, an ethanol concentration of 49.52%, and an extraction time of 6.7 min. When the microwave power, ethanol concentration, and extraction time were set at 125.43 W, 40.54%, and 8.1 min, respectively, the maximum nitrite-scavenging ability was 80.47%. The optimum ranges of the extraction conditions, superimposed by the response surface methodology, could predicate a microwave power of 110-150 W, ethanol concentration of 0-45%, and extraction time of 7-9 min.

Drug Targeting to Lungs by Way of Microspheres

  • Harsha, N. Sree;Rani, R.H. Shobha
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.598-604
    • /
    • 2006
  • In many conventional drug delivery systems in vogue, failure to deliver efficient drug delivery at the target site/organs; is evident as a result, less efficacious pharmacological response is elicited. Microspheres can be derived a remedial measure which can improve site-specific drug delivery to a considerable extent. As an application, Lung-targeting Ofloxacin-loaded gelatin microspheres (GLOME) were prepared by water in oil emulsion method. The Central Composite Design (CCD) was used to optimize the process of preparation, the appearance and size distribution were examined by scanning electron microscopy, the aspects such as in vitro release characteristics, stability, drug loading, loading efficiency, pharmacokinetics and tissue distribution in albino mice were studied. The experimental results showed that the microspheres in the range of $0.32-22\;{\mu}m$. The drug loading and loading efficiency were 61.05 and 91.55% respectively. The in vitro release profile of the microspheres matched the korsmeyer’s peppas release pattern, and release at 1h was 42%, while for the original drug, ofloxacin under the same conditions 90.02% released in the first half an hour. After i.v. administration (15 min), the drug concentration of microspheres group in lung in albino mice was $1048\;{\mu}g/g$, while that of controlled group was $6.77\;{\mu}g/g$. GLOME found to release the drug to a maximum extent in the target tissue, lungs.

Ultrasound-assisted Extraction for Development of Skin Whitening and Anti-wrinkling Cosmetic Materials from Spirulina platensis (스피루리나(Spirulina platensis)로부터 미백과 주름개선 생리활성 물질 분리를 위한 초음파 추출공정 개발)

  • Kim, So Hee;Jeon, Seong Jin;Kim, Jun Hee;Yeom, Suh Hee;Kim, Jin Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.3
    • /
    • pp.271-279
    • /
    • 2021
  • Ultrasound-assisted extraction (UAE) conditions, including extraction time, extraction temperature, and ethanol concentration, were optimized to increase the total flavonoid content (TFC), tyrosinase inhibitory activity (TIA), and collagenase inhibitory activity (CIA) of Spirulina platensis through central composite design (CCD). For the optimization of the three dependent variables, a quadratic regression model was derived from 17 experimental sets for the simultaneous maximization of TFC, TIA, and CIA. The predicted optimal UAE conditions were 44.0 min of extraction time, 82.8℃ of extraction temperature, and 96.0% of ethanol concentration. Under these conditions, 0.93 mg QE/g DM of TFC, 81.9% of CIA, and 92.1% of TIA were predicted. The CCD-based UAE optimization enabled an increase in TFC, CIA, and TIA, thereby confirming that the S. platensis extract can be used in the development of a cosmetic material with skin whitening and anti-wrinkle effects.

Application of Statistical Experimental Design to Improve the Quality of Fresh-Cut Apple Cubes by Edible Coating with Alginate

  • Zuo, Li;Lee, Jun-Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.825-832
    • /
    • 2006
  • The effect of alginate coating in combination with an anti-browning agent on increasing the post-cutting shelf life and improving the quality of minimally processed apple cubes was studied during storage at room temperature for 5 days. A simple coating technique involving the chemical cross-linkage of alginate by calcium was used. Statistical-based experimental designs were applied to improve the quality of the alginate-coated apple cubes (ACAC). Plackett-Burman design was first used to determine the main factors influencing the preservation of the original weight, color, and texture of ACAC. Among these variables, alginate concentration ($X_1$), dipping time ($X_2$), and dipping temperature ($X_3$) significantly influenced the ACAC weight and color (confidence levels above 90%). Subsequently, the effects of the 3 main factors were further investigated by a central composite design. The polynomial models developed by response surface methodology were adequate to describe the relationships between the studied factors and the responses. Overall optimization conducted by superimposing the curves of the responses enabled the determination of an optimal range of the independent variables in which the five responses were simultaneously optimized. The point chosen as representative of this optimal area corresponded to $X_1=2.98%$, $X_2=0.85\;min$, and $X_3=55^{\circ}C$ and under these conditions the model predicted weight loss=0.522%, relative hardness=1.517, ${\Delta}E=1.423$, browning inhibition=93.403%, and ${\Delta}L=0.158$.

Optimization of chemical cleaning for reverse osmosis membranes with organic fouling using statistical design tools

  • Park, Ki-Bum;Choi, Changkyoo;Yu, Hye-Weon;Chae, So-Ryong;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.474-484
    • /
    • 2018
  • The cleaning efficiency of reverse osmosis (RO) membranes inevitably fouled by organic foulants depends upon both chemical (type of cleaning agent, concentration of cleaning solution) and physical (cleaning time, flowrate, temperature) parameters. In attempting to determine the optimal procedures for chemical cleaning organic-fouled RO membranes, the design of experiments concept was employed to evaluate key factors and to predict the flux recovery rate (FRR) after chemical cleaning. From experimental results and based on the predicted FRR of cleaning obtained using the Central Composite Design of Minitab 17, a modified regression model equation was established to explain the chemical cleaning efficiency; the resultant regression coefficient ($R^2$) and adjusted $R^2$ were 83.95% and 76.82%, respectively. Then, using the optimized conditions of chemical cleaning derived from the response optimizer tool (cleaning with 0.68 wt% disodium ethylenediaminetetraacetic acid for 20 min at $20^{\circ}C$ with a flowrate of 409 mL/min), a flux recovery of 86.6% was expected. Overall, the results obtained by these experiments confirmed that the equation was adequate for predicting the chemical cleaning efficiency with regards to organic membrane fouling.

Model Updating of a RC Frame Building using Response Surface Method and Multiobjective Optimization (반응표면법 및 다목적 최적화를 이용한 철근콘크리트 건물모델의 모델 개선)

  • Lee, Sang-Hyun;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this paper, a model updating procedure based on the response surface method combined with the multi-objective optimization was proposed and applied for updating of the FE models representing a low-rise reinforced concrete building before and after the seismic retrofit. The dynamic properties to be matched were obtained from vibration tests using a small shaker system. By varying the structural parameters according to the central composite design, analysis results from the initial FE model using a commercial software were collected and used to produce two regression functions each of which representing the errors in the natural frequencies and mode shapes. The two functions were used as the objective functions for multi-objective optimization. Final solution was determined by examining the Pareto solutions with one iteration. The parameters representing the stiffnesses of existing concrete, masonry, connection stiffness in expansion joint, new concrete, retrofitted members with steel section jacketing were selected and identified.

Optimization Condition of Trace Analysis of Fuel Oxygenated Compounds Using The Design of Experiment (DOE) in Solid-Phase Microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 실험계획법을 이용한 연료첨가제 미량분석의 최적조건)

  • An, Sang-Woo;Lee, Si-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • In this study, Solid-phase micro-extraction (SPME) with Gas Chromatograph using Flame Ionization Detector (GC/FID) was studied as a possible alternative to liquid-liquid extraction for the analysis of Methyl tert-butyl ether (MTBE) and Tertiary-butyl ether (TBA) in water and an optimization condition of trace analysis of MTBE and TBA using the design of experiment (DOE) was described. The aim of our research was to apply experimental design methodology in the optimization condition of trace analysis of fuel oxygenated compounds in soil-phase microextraction with GC/FID. The reactions of SPME were mathematically described as a function of parameters of Temp ($X_1$), Volume ($X_2$), Time ($X_3$) and Salt ($X_4$) being modeled by the use of the partial factorial designs, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The model predicted agreed with the experimentally observed result ($Y_1$(MTBE, $R^2$ = 0.96, $Y_2$ (TBA, $R^2$ = 0.98)). The estimated ridge of the expected maximum responses and optimal conditions for MTBE and TBA were 278.13 and (Temp ($X_1$) = $48.40^{\circ}C$, Volume ($X_2$) = 73.04 mL, Time ($X_3$) = 11.51 min and Salt ($X_4$) = 12,50 mg/L), and 127.89 and (Temp ($X_1$) = $52.12^{\circ}C$, Volume ($X_2$) = 88.88mL, Time ($X_3$) = 65.40 min and Salt ($X_4$) = 12,50 mg/L), respectively.