• Title/Summary/Keyword: center-of-gravity point

Search Result 110, Processing Time 0.038 seconds

Stability Analysis of a Biped Walking Robot with Foot Rotation Indicator

  • Noh, Kyung-Kon;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.105.2-105
    • /
    • 2002
  • $\textbullet$ Statically stable walk with COG(center of gravity) $\textbullet$ Dynamically stable walk with ZMP(zero moment point) $\textbullet$ Dynamically adaptational stable walk with FRI(foot ratation indicator) $\textbullet$ Simplified inverted pendulum model approach $\textbullet$ Analysis posture of biped's foot as passive joint $\textbullet$ Stability compensation method of FRI against falling down $\textbullet$ Simulation of ZMP and FRI to real biped robot IWR-III

  • PDF

Hovering Performance Improvement by Modifying COG of Underwater Robotic Platform (수중운항로봇 플랫폼의 무게중심 조정을 통한 제어성능 향상)

  • Bak, Jeongae;Kim, Jong-Won;Jin, Sangrok;Kim, Jongwon;Seo, TaeWon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.661-666
    • /
    • 2015
  • This paper presents control performance improvement by modifying center of gravity (COG) of an underwater robotic platform. To reduce the oscillation or to increase the positioning accuracy, it is important to accurately know the COG of an underwater robotic platform. The COG is determined by the three measured tilting angles of the platform in different postures. The tilting angle is measured while the platform is hanged by two strings. Using coordinate transformation, the plane of intersection is defined from the angle of the platform and the position of the string. The COG of the robotic platform is directly calculated by the intersected point in three defined planes. The measured COG is implemented to the control algorithm that is pre-designed in the previous research, and the empirical result on tilting gives 48.26% improved oscillation performance comparing to the oscillation result with the ideal COG position.

A Study on Shipborne Gravity Data Correction Using Kalman RTS Filter (칼만 RTS 필터를 이용한 선상 중력 자료 보정에 관한 연구)

  • Hwang, Jong-Sun;Han, Hyun-Chul
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.343-348
    • /
    • 2010
  • Gravity anomalies observed in shipborne survey are usually distorted by bad weather conditions and unexpected vessel movement. These distorted data should be removed because they may mislead the data interpretation. However, it is not possible to perfectly remove all erroneous data. Cross-over point correction, which is generally used, only reduces the errors at cross-over points, and thus the data still contain error values. To resolve this drawback, Rauch-Tung-Striebel(RTS) filter was adopted to minimize all errors in the data and at cross-over points. After applying this method, the range of anomaly variation is reduced from 15 mGal to less than 2 mGal, and errors at the cross-over points are minimized from 4.21 mGal to 2.95 mGal. The results imply that RTS filter is very useful to reduce errors in the data and corss-over points.

Empirical and Numerical Analyses of a Small Planing Ship Resistance using Longitudinal Center of Gravity Variations (경험식과 수치해석을 이용한 종방향 무게중심 변화에 따른 소형선박의 저항성능 변화에 관한 연구)

  • Michael;Jun-Taek Lim;Nam-Kyun Im;Kwang-Cheol Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.971-979
    • /
    • 2023
  • Small ships (<499 GT) constitute 46% of the existing ships, therefore, it can be concluded that they produce relatively high CO2 gas emissions. Operating in optimal trim conditions can reduce the resistance of the ship, which results in fewer greenhouse gases. An affordable way for trim optimization is to adjust the weight distribution to obtain an optimum longitudinal center of gravity (LCG). Therefore, in this study, the effect of LCG changes on the resistance of a small planing ship is studied using empirical and numerical analyses. The Savitsky method employing Maxsurf resistance and the STAR-CCM+ commercial computational fluid dynamics (CFD) software is used for the empirical and numerical analyses, respectively. Finally, the total resistance from the ship design process is compared to obtain the optimum LCG. To summarize, using numerical analysis, optimum LCG is achieved at the 46.2% length overall (LoA) at Froude Number 0.56, and 43.4% LoA at Froude Number 0.63, which provides a significant resistance reduction of 41.12 - 45.16% compared to the reference point at 29.2% LoA.

Kinematical Analysis of the YEGA Motion on the Uneven Parallel Bars (이단 평행봉 YEGA 동작의 운동학적 분석)

  • Lee, Young-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.111-125
    • /
    • 2005
  • This study was intended to assist athletes in having a technical understanding of the Yega motion and provide basic material for improving their competitive ability by analyzing the kinematic variable of the Yega motion during the competition of the uneven parallel bar of female gymnastics. For this purpose, the game of female gymnastics participating in the uneven parallel bar game was personally videotaped using the DLT(direct linear transformation) method. An attempt was made to make a comparative analysis of the Yega motion by dividing the final first to third places into the upper group('A' group) and the sixth to eighth places into the lower group('B' group). Based on the results of actual analysis on the scenes of actual game, the following conclusion was concluded: 1. Athletes in the 'A' group showed the shorter required time on the flight phase(P3) than counterparts in the 'B' group. 2. Athletes in the 'A' group showed the little width in the horizontal displacement of the center of gravity than counterparts in the 'B' group. But athletes in the 'A' group exhibited the somewhat greater relative vertical height of the center of the body. 3. Athletes in the 'A' group showed the greater resultant velocity at the lowest point of the center of the body(E2) and at the point in time of release(E3) compared to counterparts in the 'B' group.

Hand Gesture Recognition for Understanding Conducting Action (지휘행동 이해를 위한 손동작 인식)

  • Je, Hong-Mo;Kim, Ji-Man;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.263-266
    • /
    • 2007
  • We introduce a vision-based hand gesture recognition fer understanding musical time and patterns without extra special devices. We suggest a simple and reliable vision-based hand gesture recognition having two features First, the motion-direction code is proposed, which is a quantized code for motion directions. Second, the conducting feature point (CFP) where the point of sudden motion changes is also proposed. The proposed hand gesture recognition system extracts the human hand region by segmenting the depth information generated by stereo matching of image sequences. And then, it follows the motion of the center of the gravity(COG) of the extracted hand region and generates the gesture features such as CFP and the direction-code finally, we obtain the current timing pattern of beat and tempo of the playing music. The experimental results on the test data set show that the musical time pattern and tempo recognition rate is over 86.42% for the motion histogram matching, and 79.75% fer the CFP tracking only.

  • PDF

Feature Point Extraction of Hand Region Using Vision (비젼을 이용한 손 영역 특징 점 추출)

  • Jeong, Hyun-Suk;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2041-2046
    • /
    • 2009
  • In this paper, we propose the feature points extraction method of hand region using vision. To do this, first, we find the HCbCr color model by using HSI and YCbCr color model. Second, we extract the hand region by using the HCbCr color model and the fuzzy color filter. Third, we extract the exact hand region by applying labeling algorithm to extracted hand region. Fourth, after finding the center of gravity of extracted hand region, we obtain the first feature points by using Canny edge, chain code, and DP method. And then, we obtain the feature points of hand region by applying the convex hull method to the extracted first feature points. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

Vehicle Reference Dynamics Estimation by Speed and Heading Information Sensed from a Distant Point

  • Yun, Jeonghyeon;Kim, Gyeongmin;Cho, Minhyoung;Park, Byungwoon;Seo, Howon;Kim, Jinsung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.209-215
    • /
    • 2022
  • As intelligent autonomous driving vehicle development has become a big topic around the world, accurate reference dynamics estimation has been more important than before. Current systems generally use speed and heading information sensed from a distant point as a vehicle reference dynamic, however, the dynamics between different points are not same especially during rotating motions. In order to estimate properly estimate the reference dynamics from the information such as velocity and heading sensed at a point distant from the reference point such as center of gravity, this study proposes estimating reference dynamics from any location in the vehicle by combining the Bicycle and Ackermann models. A test system was constructed by implementing multiple GNSS/INS equipment on an Robot Operating System (ROS) and an actual car. Angle and speed errors of 10° and 0.2 m/s have been reduced to 0.2° and 0.06 m/s after applying the suggested method.

COMPUTER CONTROLLED PLANTING SYSTEM FOR MULCHING CULTIVATION USING POLUETHYLENE FILM

  • Nagata, Masateru;Zou, Cheng
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.761-767
    • /
    • 1993
  • A precision planting system using computer controlled technology for mulching cultivation was developed and tested . The system consisting of a micro-computer, several optical fiber sensors and control actuators realized the mechanization of the precision planting operation. The film hole positions, existences of a seed on shutter were detected and the planting speed was measured. The shutter opening mechanism and a seed metering device driven by a stepping motor were controlled, automatically . The planting timing of the shutter opening mechanism were analyzed from a video camera motion analysis, theoretically. The results showed a sufficient accuracy of a seed planted into the center a film hole with a variety of planting speeded. The gravity point positions in film hole of seeds planted by the system just were within the area of +-5mm of the hole center when the hole diameter was 40mm.

  • PDF