• Title/Summary/Keyword: center wavelength shift

Search Result 50, Processing Time 0.024 seconds

Investigation of a nonreciprocal phase shift properties of optical waveguide isolators with a magneto-optic layer (자기 광학적층을 갖는 광 도파로 아이솔레이터 제작을 위한 비가역적 위상변위에 대한 연구)

  • Yang, Jeong-Su;Kim, Young-Il;Byun, Young-Tae;Woo, Deok-Ha;Lee, Seok;Kim, Sun-Ho;Yi, Jong-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.142-145
    • /
    • 2003
  • The nonreciprocal phase shift characteristics of infinite slab optical waveguides with magneto-optic materials in the cladding layer was calculated at 1.55 ${\mu}{\textrm}{m}$ for optical isolators. The infinite slab waveguide structures considered in this paper were as follows. rho magneto-optic materials used as a cladding layer were Ce:YIG and LNB(LuNdBi)$_3$(FeAl)$_{5}$)$_{12}$,). Their specific Faraday rotations Θ$_{F}$ are 4500$^{\circ}$/cm, 500$^{\circ}$/cm at wavelength 1.55 ${\mu}{\textrm}{m}$ respectively. The guiding layer with multi-quantum well structure was used, and it consists of 1.3Q and InGaAs. In order to investigate the effect of evanescent field penetrating the cadding, layer, guiding mode characteristics were calculated for the cases when the substrate is InP and air. We calculated the minimum lengths of 90$^{\circ}$ nonreciprocal phase shifters and their optimum guiding layer thicknesses in various optical waveguide structures.res.s.

Characteristics of a Solder-Clad FBG Temperature Sensor (땜납이 용융 부착된 FBG 온도 센서의 특성)

  • Pyoung, Jae-Hyub;Lee, Sang-Bae;Shin, Jong-Dug
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.45-50
    • /
    • 1999
  • We report a solder-clad fiber Bragg grating(FBG) temperature sensor in order to obtain better Bragg wavelength sensitivity to temperature than a bare FBG sensor. The solder-clad FBG sensor shows a wavelength sensitivity improvement by a factor of four compared to the case of a bare FBG sensor at temperatures below $110^{\circ}C$. However, it has a sensitivity of 0.01 $nm/^{\circ}C$ at temperatures over $110^{\circ}C$, which is identical to that of a bare FBG sensor. Bragg wavelength of the sensor shows a blue-shift below $110^{\circ}C$ because the sensor is fabricated above melting temperature of solder. The thermal stress at the FBG-solder interface has been relieved by annealing, which results in a stable operation.

  • PDF

Tunable Er$^{3+}$ dopsd Fier DFB Laser (파장 가변 어븀 첨가 광섬유 DFB 레이저)

  • Yoon, Hong;Cho, Kyu-Man;Lee, Sang-Bae;Kim, Sang-Hyuk;Choi, Sang-Sam
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.429-433
    • /
    • 2000
  • A study of the tunable fiber DFB laser using PZT-stretcher is presented. The device has an laser ocsillator by using a fiber Bragg grating at 1559.4 nm written directly into a 3-cm long $Er^{3+}$ doped fiber. Post UV-exposure method to provide the necessary phase shift is used for a single mode operation. The device shows the single mode operation of $230\muW$ output power and has a narrow linewidth of 35 kHz. The lasing wavelength of the laser can be tuned in a range of 3 nm by stretching the grating.rating.

  • PDF

Single-walled Carbon Nanotube-triethylammonium Ionic Liquid as a New Catalytic System for Michael Reaction

  • Attri, Pankaj;Choi, Eun Ha;Kwon, Gi-Chung;Bhatia, Rohit;Gaur, Jitender;Arora, Bharti;Kim, In Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3035-3040
    • /
    • 2014
  • A new efficient catalytic method for aza/thia-Michael addition reactions of amines/thiols with higher product yields has been developed. Combining single-walled carbon nanotubes (SWCNT) with triethylammonium hydrogen phosphate (TEAP) ionic liquid (IL) can work as a catalyst. We utilized Raman spectroscopy to gain insight into the interactions between IL and SWCNT. The interactions between SWCNT with TEAP were confirmed by the increasing intensity ratios and spectral shift in wavelength of the Raman D and G bands of SWCNT. Further, the morphology of the resulting composite materials of TEAP and SWCNT was determined by using scanning electron microscopy (SEM). Higher product yield in reduced reaction time is the key advantage of using bucky gel as a catalyst for Michael reaction.

Detection of Nitroaromatic Compounds Based on Fluorescent Silafluorene Chemosensors

  • Kim, Bumseok
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • A simple and rapid method is described for detecting nitroaromatic explosives in air or seawater with the use of photoluminescent organosilicon compounds. The synthesis, spectroscopic characterization, and fluorescence quenching efficiency of silafluorenes are reported. Silafluorenes were synthesized from the reduction of dilithiobiphenyl with dichlorosilanes. Two silafluorenes were used for the detection of nitroaromatic compounds. Detection of nitroaromatic molecules, such as 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and picric acid (PA), has been explored. A linear Stern-Volmer relationship was observed for the first three analytes. Fluorescence spectra of silafluorenes obtained in either toluene solutions or thin films displayed no shift in the maximum of the emission wavelength. The photoluminescence quenching occurs by a static mechanism.

Multi-Point Optical Fiber Grating Strain Sensor System (광섬유 격자 다중화 스트레인 센서 시스템)

  • Lee, Yong-Wook;Jung, Jae-Hoon;Chung, Seung-Hwan;Lee, Byoung-Ho;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.147-151
    • /
    • 2001
  • An optical fiber sensor is capable of nondestructive measurement of a structure and it has an advantage of the immunity to electromagnetic interference because light is not affected by electromagnetic wave. In addition, if optical fibers are buried in an object like a concrete, this sensor tan analyze defects and physical status of the object without disassembling it. Especially, the fiber Bragg grating sensor is a promising optical fiber sensor capable of nondestructive test of such an object. A fiber Bragg grating has the characteristics of reflecting or blotting light of a specific wavelength. If we apply physical quantity like strain to the fiber Bragg grating, the center wavelength of the reflected light is shifted and then we can find the physical quantity applied to the fiber Bragg grating by measuring the center wavelength shift of the reflected light. The fiber Bragg grating sensor capable ot static and dynamic strain measurement is being used in health-monitoring of buildings, structures, etc. Recently increasing is interest in dynamic strain measurement inevitable to the civil structures such as roads and bridges. In this study we implemented the optical fiber sensor system which can measure dynamic strain at multiple points using Fabry-Perot wavelength demodulation. And we measured the static and dynamic strain using this sensor system with a test structure(cantilever). Measurement results were similar to those obtained with the conventional electrical measurement methods.

  • PDF

Rapid Synthesis of AgInS2/ZnS Core/Shell Nanoparticles and Their Luminescence Property

  • Lee, Seung Jae;Kim, Da Hea;Jung, Jongjin;Park, Joung Kyu
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.45-47
    • /
    • 2015
  • We have successfully synthesized $AgInS_2$ core and $AgInS_2$/ZnS core/shell nanoparticles by the sonochemical method. The ultrasonic based $AgInS_2$ and $AgInS_2$/ZnS nanoparticle synthesis can be utilized as a simple and rapid method. The $AgInS_2$/ZnS nanoparticles show the higher fluorescence intensity and quantum yield than $AgInS_2$ nanoparticles. Fluorescence wavelength of $AgInS_2$/ZnS shows blue shift from 635 nm to 610 nm against $AgInS_2$ because of reducing the defect sites and increasing spatial confinements. For the fluorescence lifetime, $AgInS_2$/ZnS (124.8 ns) has longer lifetime than $AgInS_2$ (54.8 ns).

Synthesis and Color Tuning of Poly(p-phenylenevinylene) Containing Terphenyl Units for Light Emitting Diodes

  • Jin, Young-Eup;Kim, Jin-Woo;Park, Sung-Heum;Kim, Hee-Joo;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1807-1818
    • /
    • 2005
  • New PPV based conjugated polymers, containing terphenyl units, were prepared as the electroluminescent (EL) layer in light-emitting diodes (LEDs). The prepared polymers, poly[2,5-bis(4-(2-etylhexyloxy)phenyl)-1,4-phenylenevinylene] (BEHP-PPV), poly[2-(2-ethylhexyloxy)-5-(4-(4-(2-etylhexyloxy)phenyl)phenyl)-1,4-phenylenevinylene] (EEPP-PPV) and poly[2-(2-ethylhexyloxy)-5-(9,9-bis(2-etylhexyl)fluorenyl)-1,4 phenylenevinylene] (EHF-PPV), were soluble in common organic solvents and used as the EL layer in double layer light-emitting diodes (LEDs) (ITO/PEDOT/polymer/Al). The polymers were prepared by the Gilch reaction. The number-average molecular weight $(M_n)$, weight-average molecular weight $(M_w)$, and the polydispersities (PDI) of these polymers were in the range of 9000-58000, 27000-231000, 2.9-3.9, respectively. These polymers have quite good thermal stability with decomposition starting above 320-350. The polymers show photoluminescence (PL) with maximum peaks at around 526-562 nm (exciting wavelength, 410 nm) and blue EL with maximum peaks at around $\lambda_{max}$ = 526-552 nm. The current-voltageluminance (I-V-L) characteristics of polymers show turn-on voltages of 5 V. Even though both of EEPP-PPV and BEHP-PPV have the same terphenyl group in the repeating unit, EEPP-PPV with directly substituted alkoxy group in the back bone has longer effective conjugation length than BEHP-PPV, and exhibits red shift in the PL spectra. Both of EEPP-PPV and EHF-PPV have ter-phenyl units and directly substituted alkoxy group in back bone. EHF-PPV with fluorenyl unit attached to the PPV backbone has shorter effective conjugation length than EEPP-PPV with biphenyl unit, and exhibits blue shift in the PL spectra.

Improvement of Optical Characteristics in Viewing Directions in a Reflective Cholesteric Liquid Crystal Color Filter (반사형 콜레스테릭 칼라필터의 시야각에 따른 광특성 향상에 관한 연구)

  • Kim, Tae-Hyun;Lim, Young-Jin;Hwang, Seong-Jin;Lee, Myong-Hoon;Jang, Won-Gun;Lee, Seung-Hee
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.148-152
    • /
    • 2007
  • The prototype of color fitters for the liquid crystal displays (LCD) using cholesteric liquid crystal monomers was produced. Cholesteric liquid crystal is characterized by the unique optical features of selective reflection, which is due to the helical twisting structures of LCs comparable to the wavelength of the incident light under certain conditions of substrate treatment. In the results of the experiment, cholesteric films for red, green, and blue light reflections respectively were produced and the viewing angle dependence of these films were investigated. Reflective light of red and green films shifted to shorter wavelength regions as viewing angle becomes greater, but blue one shifted very little. Periodic micrometer-sized half-spherical photoresist formed by thermal reflow method after photo-lithography was patterned on glass substrates. The viewing angle dependence of reflective light colors of red, green, and blue films on the patterned substrates compared with those on no patterned substrates was investigated. We could confirm the dependences were much smaller on the patterned substrates by bare eyes and Lab-color coordination methods qualitatively.

Impact of CO2 Laser Pretreatment on the Thermal Endurance of Bragg Gratings

  • Gunawardena, Dinusha Serandi;Lai, Man-Hong;Lim, Kok-Sing;Ahmad, Harith
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.575-578
    • /
    • 2016
  • The thermal endurance of fiber Bragg gratings (FBGs), written with the aid of 193-nm ArF excimer laser irradiation on H2-loaded Ge/B codoped silica fiber, and pretreated with a CO2 laser and a subsequent slow cooling process, is investigated. These treated gratings show relatively less degradation of grating strength during the thermal annealing procedure. The thermal decay characteristics of treated and untreated fiber, recorded over a time period of 9 hours, have been compared. The effect on the Bragg transmission depth (BTD) and the center-wavelength shift, as well as the growth of refractive-index change during the grating inscription process for both treated and untreated fiber, are analyzed.