• Title/Summary/Keyword: center arm system

Search Result 140, Processing Time 0.021 seconds

The elbow is the load-bearing joint during arm swing

  • Bokku Kang;Gu-Hee Jung;Erica Kholinne;In-Ho Jeon;Jae-Man Kwak
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.126-130
    • /
    • 2023
  • Background: Arm swing plays a role in gait by accommodating forward movement through trunk balance. This study evaluates the biomechanical characteristics of arm swing during gait. Methods: The study performed computational musculoskeletal modeling based on motion tracking in 15 participants without musculoskeletal or gait disorder. A three-dimensional (3D) motion tracking system using three Azure Kinect (Microsoft) modules was used to obtain information in the 3D location of shoulder and elbow joints. Computational modeling using AnyBody Modeling System was performed to calculate the joint moment and range of motion (ROM) during arm swing. Results: Mean ROM of the dominant elbow was 29.7°±10.2° and 14.2°±3.2° in flexion-extension and pronation-supination, respectively. Mean joint moment of the dominant elbow was 56.4±12.7 Nm, 25.6±5.2 Nm, and 19.8±4.6 Nm in flexion-extension, rotation, and abduction-adduction, respectively. Conclusions: The elbow bears the load created by gravity and muscle contracture in dynamic arm swing movement.

Comparison Between DCM and Quaternion Transformation in Lever Arm Compensation of Reference System for Flight Performance Evaluation of DGPS/INS

  • Park, Ji-Hee;Shin, Dong-Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 2012
  • The flight performance evaluation of navigation system is very significant because the reliability of navigation data directly affect the safety of aircraft. Especially, the high-level navigation system such as DGPS/INS, need more precise flight performance evaluation method. The performance analysis is evaluated by comparing between the navigation system in aircraft and reference trajectory which is more precise than navigation system in aircraft. In order to verify DGPS/INS performance of m-level, the GPS receiver, which is capable post-processed Carrier-phase Differential GPS(CDGPS) method of cm-level, have to be used as reference system. The DGPS/INS is estimated the Center of Gravity (CG) point of aircraft to offer precise performance while the reference system is output the position of GPS antenna which is mounted on the outside of aircraft. Therefore, in order to more precise performance evaluation, it needs to compensate the lever arm and coordinates transformation. This paper use quaternion and Direct Cosine Matrix(DCM) methods as coordinate transformation matrix in lever arm compensation of CDGPS reference trajectory. And it compares NED errors of DCM and quaternion transformation in lever arm of reference trajectory via DGPS/INS result.

Study of 7 Degree of Freedom Desktop Master Arm (7자유도 탁상식 마스터 암의 설계 연구)

  • Choi, Hyeungsik;Lee, Dong-Jun;Ha, Kyung-Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.59-65
    • /
    • 2012
  • In this research, a novel mater arm was studied as a teaching device for an underwater revolute robot arm used as a slave arm. The master arm was designed to be a seven-degree-of-freedom (DOF) structure, with a structure similar to that of the slave arm, and to be desktop size to allow it to be worn on a human arm. The master arm with encoders on the joints was used as an input device for teaching a slave robot arm. In addition, small electric magnets were installed at the joints of the master arm to generate the haptic force. A control system was designed to sense excessive force and torque in the joints of the master arm and protect it by controlling the position and velocity of the slave arm through the encoder signal of the master arm.

Three-dimensional intraoperative computed tomography imaging for zygomatic fracture repair

  • Peleg, Oren;Ianculovici, Clariel;Shuster, Amir;Mijiritsky, Eitan;Oz, Itay;Kleinman, Shlomi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.5
    • /
    • pp.382-387
    • /
    • 2021
  • Objectives: Zygomatic complex (ZMC) fractures comprise up to 40% of all facial fractures. Misaligned bone fragments and misplaced fixation hardware traditionally detected postoperatively on plain radiographs of the skull might require re-operation. The intraoperative O-Arm (Medtronic, USA) is a three-dimensional (3D) computed tomographic imaging system. Materials and Methods: This retrospective single-center study evaluated the utility of O-Arm scanning during corrective surgeries for ZMC and zygomatic arch (ZA) fractures from 2018 to 2020. Three females and 16 males (mean age, 31.52 years; range, 22-48 years) were included. Fracture instability (n=6) and facial deformity (n=15) were the most frequent indications for intraoperative 3D O-Arm scan. Results: The images demonstrated that all fracture lines were properly reduced and fixed. Another scan performed at the end of the fixation or reduction stage, however, revealed suboptimal results in five of the 19 cases, and further reduction and fixation of the fracture lines were required. Conclusion: Implementation of an intraoperative O-Arm system in ZMC and ZA fracture surgeries assists in obtaining predictable and accurate results and obviates the need for revision surgeries. The device should be considered for precise operations such as ZMC fracture repairs.

An Analytical Study on the Dynamics of Center Pivot Rocker Arm Type Valve Train System with Roller (롤러를 장착한 로커암 타입 밸브트레인 시스템의 동적 거동 해석)

  • 한동철;신흥주;조명래
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.318-322
    • /
    • 1999
  • An analytical study about dynamic behavior of center pivot rocker arm type valve train system equipped with roller of diesel engine is developed. At first, a mathematical model for the dynamic analysis has been set up using the lumped parameter method. In that model, valve spring is divided as some mass elemehts so as to simulate spring surging, Then, how the design parameters, such as valve mass, rocker arm inertia, valve spring stiffness, and initial load on valve spring, affect valve dynamic behavior especially in the valve close area is scrutinized.

  • PDF

RK- Methods for Robot Application problems

  • Senthilkumar, Sukumar;Lee, Malrey;Kwon, Tae-Kyu
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.18-20
    • /
    • 2013
  • The significance, is to introduce a novel way to employ the improved Runge-Kutta fifth order five stage method, here after called as Modified IRK(5,5) method, for system of second order robot arm problem and variations in angles at the joints in which parameters governing with two degrees of freedom which requires lesser number of function evaluations per time step as compared to the existing ones, in order to save time and spaceAn ultimate aim of this present paper is to solve application problem such as robot arm and initial value problems by applying Runge-Kutta fifth order five stage numerical techniques. The calculated output for robot arm coincides with exact solution which is found to be better, suitable and feasible for solving real time problems.

Study on the Direct Steering System using Rack and Pinion for Ultra-Small Vehicles (랙 & 피니언 기어를 이용한 소형 자동차의 직접 조향 방식에 관한 연구)

  • Kim, Soon-Ho;Kang, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.127-134
    • /
    • 2002
  • This study present a direct steering system using rack and pinion for ultra-small vehicles. The traditional small vehicles for special use had the limitation of space by reason of short wheel tread. These vehicles has adopted a indirect steering system or a center arm system for steering. The disadvantages of these system were deterioration of gear efficiency and increase of parts. For direct-linkage to both knuckles, steering system is made up of out-side tie rods, tie-rod ends, and gear box. Thus, the proposed system has a minimum number of parts. The experimental results show a maximum efficiency at minimum steering angle and a minimum clearance circle. These effects were accomplished by adopting a Ackerman-Jantaud theory.

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

Safe Arm Design with MR-based Passive Compliant Joints and Visco-elastic Covering for Service Robot Applications

  • Yoon Seong-Sik;Kang Sungchul;Yun Seung-kook;Kim Seung-Jong;Kim Young-Hwan;Kim Munsang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1835-1845
    • /
    • 2005
  • In this paper a safe arm with passive compliant joints and visco-elastic covering is designed for human-friendly service robots. The passive compliant joint (PCJ) is composed of a magneto-rheological (MR) damper and a rotary spring. In addition to a spring component, a damper is introduced for damping effect and works as a rotary viscous damper by controlling the electric current according to the angular velocity of spring displacement. When a manipulator interacts with human or environment, the joints and cover passively operate and attenuate the applied collision force. The force attenuation property is verified through collision experiments showing that the proposed passive arm is safe in view of some evaluation measures.

Development of Dual-Arm Anticancer Drug Compounding Robot and Preparation System with Adaptability and High-Speed

  • Nam, Giyoon;Kim, Young Joo;Kim, Yun Jung;Kim, Yeoun Jae;Seo, Jung Ae;Kim, Kyunghwan;Kim, Kwang Gi
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.64-68
    • /
    • 2016
  • Aim Robots are able to increase safety for pharmacy staff as separating from toxicity of anti-cancer drugs. For patient safety, it would provide right dose of the drugs. Additionally, it can reduce price of the drugs. Therefore, in this study, a novel compounding anticancer drugs robot system (Dupalro) was developed. Methods We used the robot system, Motoman dual-arm robot from YASKAWA, Japan and medications which are adapted for the robot were constructed. In order to develop a process of compounding anticancer drugs, information about five medications that are required to make anticancer drugs in hospitals was used. Results System for the five types of medications was constructed, and relating procedures for anticancer drugs compounding robot were developed. Conclusion Dupalro successfully was able to not only provide incremental safety and efficiency for both patients and pharmacy staff, but also decrease price of anticancer drugs.