• Title/Summary/Keyword: cementitious powder

Search Result 84, Processing Time 0.019 seconds

Initial Strength Characteristics of Cementitious Gypsum-Containing Coal Gasification Slag Powder Replacement Cement Mortar (석고 혼입 석탄가스화 슬래그 미분말 치환 시멘트 모르타르의 초기강도 특성)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.207-208
    • /
    • 2019
  • In this study, compressive strength was measured to evaluate the initial strength of cement mortar substituted with coal gasification slag containing desulfurized gypsum, and the reactivity of desulfurized gypsum was confirmed. In order to improve the reactivity, 2% gypsum mixed type and gypsum unfedged type specimens were fabricated and the influence of desulfurization gypsum on compressive strength of coal gasification slag and blast furnace slag fine powder replacement cement mortar was compared and confirmed. As a result of the experiment, it was confirmed that the initial compressive strength of the specimen containing the desulfurized gypsum was improved at the initial stage.

  • PDF

Experimental Study on the Hydration Characteristics of Eggshell Powder in Cement Slurry (계란껍질 분말을 혼입한 시멘트 페이스트의 수화 특성에 관한 실험적 연구)

  • Chen, YuKun;Sun, Yang;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.110-111
    • /
    • 2021
  • The eggshell is a type of bio-waste which is considered hazardous to the environment. In this research, the waste eggshell is utilized as a potential filler in cementitious material. This study has measured by zeta potential to analyze the interaction between the surface of the filler and the calcium ion in the solution. Meanwhile, the effect of eggshell powder on cement hydration process has been determined by isothermal calorimeter. The results show that the surface of eggshell powder have a strong adsorption of Ca2+, and addition of the eggshell powder provides a heterogeneous nucleation site for cement, which promotes the growth of hydration products.

  • PDF

Properties of Ultra High Performance Fiber Reinforced Cementitious Composites Mixed with Limestone Powder (석회석 미분말을 혼입한 초고성능 섬유보강 시멘트복합재의 특성)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • UHPC has high performance, high strength and excellent mechanical properties. Moreover UHPC(Ultra High Performance Cementitious Composite) has advantage to reduce cross section under the same load compared with other kinds of concrete. But silica fume which is imported from foreign country has a abundant portion in UHPC mixture in comparison with normal concrete. This is one of the main reason to raise the construction cost. Superior mechanical properties of UHPC due to the optimum filling composition can be changed by replacing the very fine ingredient. The purpose of this research is to grasp the characteristic of UHPC which silica fume and silica flour is replaced with limestone powder. This experiment can be divided into three classes according to the kinds of replacement. The compressive strength and flow of all types were measured and microstructure and hydration phenomena for comparing RPC were analyzed by SEM, XRD, NMR method. As a result, the replacement can be considered to be effective by for the decrease of the UHPC structure construction cost and improvement of the fresh UHPC.

Assessment of flowing ability of self-compacting mortars containing recycled glass powder

  • Alipour, Pedram;Namnevis, Maryam;Tahmouresi, Behzad;Mohseni, Ehsan;Tang, Waiching
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • This paper investigates the effect of recycled glass powder (RGP) on flowing properties of self-compacting mortars (SCMs) containing different ratios of fillers and superplasticizer dosages. Fly ash (FA), nano-silica (NS), micro-silica (MS), metakaolin (MK) and rice husk ash (RHA) are used as fillers and their synergistic effect with RFP is studied. The effects of fillers and high-range water reducer (HRWR) on flowing ability of mortars are primarily determined by slump flow and V-funnel flow time tests. The results showed that for composites with a higher RGP content, the mortar flowing ability increased but tended to decrease when the composites containing 10% MK or 5% RHA. However, the flowing ability of samples incorporating 5% RGP and 10% SF or 25% FA showed an opposite result that their slump flow spread decreased and then increased with increasing RGP content. For specimens with 3% NS, the influence of RGP content on flowing properties was not significant. Except RHA and MS, the fillers studied in this paper could reduce the dosage of HRWR required for achieving the same followability. Also, the mixture parameters were determined and indicated that the flowability of mixtures was also affected by the content of sand and specific surface area of cement materials. It is believed that excess fine particles provided ball-bearing effect, which could facilitate the movement of coarse particles and alleviate the interlocking action among particles. Also, it can be concluded that using fillers in conjunction with RGP as cementitious materials can reduce the material costs of SCM significantly.

Performance of one-part alkali activated recycled ceramic tile/fine soil binders

  • Mawlod, Arass Omer
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.311-317
    • /
    • 2020
  • Performance of Sustainable materials continues through using of recycled waste construction materials to minimize the utilization of the natural resources. The cement industry is a major source of CO2 in the atmosphere which is the main cause of global warming. Replacement of OPC with other sustainable cementitious materials has been the most interesting area of researches. This investigation focuses on the properties of alkali-activated mortar with the different replacement ratios of ceramic tile powder (CTP) by fine soil powder (FSP) (0 to 100)% and different molarities of sodium hydroxide concentrations. The experimental program was conducted by examining the compressive strength, water absorption, and water sorptivity. The results showed that the compressive strength of the specimens at age of (28, 56, and 90 days) increases with an increase in the amount of fine soil powder content and decreases at the age of 120 days. Also, minimum water absorption at the age of 90 days was found in the mixes containing 100% fine soil powder. However, fine soil powder replacement had a negative effect on the sorptivity and water absorption values at the age of 120 days. On the other hand, the 12M sodium hydroxide concentration was considered the optimum concentration compared to other concentrations.

Influence of Constitute Factor on the Compressive Strength of Ultra-High Strength Steel Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 구성인자가 압축강도에 미치는 영향)

  • Park Jung-Jun;Koh Kyung-Taek;Kang Su-Tae;Kim Sung-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.35-41
    • /
    • 2005
  • Recently, various fiber reinforced cementitious composites are used in order to solve problems of concrete as the brittleness breaking. Especially, in U.S.A., Europe, and Japan, ultra-high strength steel fiber reinforced cementitious composites(ultra-high strength SFRCC) with compressive strength in excess of 100 MPa were developed. However few studies have been investigated on the high-strength SFRCC in Korea. Therefore, in this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-binder ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.20, we could make ultra-high strength SFRCC with compressive strength of 180MPa through using of silica fume, quartz sand with below 0.5mm filling powder and steel fiber.

A Study on Viscosity Reducing of Cement-Based Materials by Replacing Byproducts and Adding Low-Viscosity Type HRWR (산업부산물 치환 및 저점도형 고성능 감수제를 사용한 시멘트 계열 재료의 점도저하 방안 연구)

  • Son, Bae-Geun;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.353-358
    • /
    • 2017
  • The aim of this research is providing a fundamental idea on reducing viscosity of high performance cementitous materials. In rheological aspect, to determine the fluidity of the cementitious materials, both yield stress and viscosity should be controlled. For the high performance cementitious materials with low water-to-binder ratio and high volume fraction, it was difficult to reduce the viscosity with superplasticizer while reducing yield stress was relatively easy. Hence, in this research, with the goal of reducing viscosity of the cementitious materials, both ways of reducing viscosity were suggested: achieving proper combination of powder conditions, and adding low-viscosity typed water reducer. First, by replacing various byproduct powders, specifically, raw coal ash and wasted limestone powder showed favorable results on reducing viscosity of the cement paste. Regarding the low viscosity typed superplasticizer, it showed a good performance on reducing viscosity comparing with generic superplasticizer. Therefore, based on the results of this research, it is expected to provide a fundamental idea on reducing viscosity of cementitious materials by various methods.

Effect of Additives on the Strength Characteristics of MDF Cement Composites (MDF 시멘트 복합재료의 강도 특성에 미치는 첨가재의 영향)

  • 김태현;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.893-899
    • /
    • 1992
  • Composite specimens, which are composed MDF cement of HAC-PVA system were prepared by adding carbon fiber, hydrated silica and SiC powder, and we studied effect of additives on the flexural strength of the composites. All of additives is effective in the improvement of flexural strength of the composite specimens. The size of average pore diameter in the specimens which have high flexural strength property was small. Specimen mixed with hydrated silica was effective in the particle compact property. Flexural strength of carbon fiber reinforced MDF cement composites were improved because of crack deflection of carbon fiber in cementitious matrix.

  • PDF

A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio (결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구)

  • Kwon Yeong-Ho;Lee Hyun-Ho;Lee Hwa-Jin;Ha Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF

Effect of Gypsum Mixture on Activation of Coal Gasification Slag (석고 혼입이 석탄가스화 슬래그의 활성화에 미치는 영향)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.17-18
    • /
    • 2019
  • In this study, the initial strength reduction of coal gasification slag fine powders was confirmed through previous studies when used in cement formulations. It is also confirmed that the blast furnace slag is mixed with cementitious coal blast furnace slag, which is similar to coal gasification slag, to incorporate gypsum in order to prevent initial strength deterioration. In order to analyze the reactivity of coal gasification slag by desulfurization gypsum, the formation of hydrates and their reactivity at early ages were confirmed by electron microscope. In order to confirm the reactivity, the gypsum samples were prepared with unincorporated type and 2% mixed type. Experimental results showed that 2% of the desulfurized gypsum specimens reacted more actively than the uninjured ones.

  • PDF