• Title/Summary/Keyword: cement-paste

Search Result 754, Processing Time 0.023 seconds

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration (광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화)

  • Indong Jang;Namkon Lee;Jung-Jun Park;Jong-Won Kwark;Hoon Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.416-424
    • /
    • 2023
  • Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.

Arsenic removal from artificial arsenic water using CaAl-monosulfate and CaAl-ettringite (CaAl-monosulfate와 CaAl-ettringite를 이용한 인공비소폐수의 비소 제거 연구)

  • Shim, Jae-Ho;Kim, Ki-Baek;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • The objective of this study is to remove arsenate from artificially contaminated wastewater using CaAl-ettringite and CaAl-monosulfate which were synthesized in laboratory. The study was carried on the basis of solidification/stabilization of waste using cement. Monosulfate and ettringite are constituents of cement paste. The CaAl-ettringite has a chemical formula of $Ca_6Al_2O_6(SO_4)_3{\cdot}32H_2O$ and has a needle like morphology. Whereas CaAl-monosulfate $Ca_4Al_2O_6(SO_4){\cdot}12H_2O$ has layered double hydroxide structure (LDH) in which the mainlayer consists of Ca and Al and S as interlayer. Ettringite and monosulfate were synthesized by reaction of tricalcium aluminate and gypsum and hydrating this mixture at elevated temperature. The synthesized mineral were characterized by PXRD and FESEM to ensure purity. It was found that concentrations of As(V) in contaminated water were reduced from initial concentration of 1.335 mmol/L to 0.054 mmol/L and 0.300 mmol/L by CaAl-monosulfate and CaAl-ettringite respectively. The post experimental results of PXRD and FESEM analysis indicate that arsenate removal was by ion exchange.

The Analysis of Early Age Properties of Hydration Heat and Autogenous Shrinkage according to Specimen Size and Retardation of Hydration (시험체 크기 및 수화지연 효과에 따른 초기재령 수화발열 및 자기수축 특성 분석)

  • Kim, Gyu-Yong;Koo, Kyung-Mo;Lee, Hyoung-Jun;Lee, Eui-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.481-488
    • /
    • 2009
  • It has been reported that the magnitude and the development rate of autogenous shrinkage of cement paste, mortar and concrete were affected by history and magnitude of inner temperature at an early age. But it was not enough to explain the relation between hydration heat and autogenous shrinkage at an early age, because there was no certain analysis on histories of hydration heat and autogenous shrinkage in previous studies. In our prior study, to understand the relationship between hydration heat and autogenous shrinkage of concrete at an early age, the analysis method for histories of hydration heat and autogenous shrinkage was suggested. Based on this method, early age properties of hydration heat and autogenous shrinkage of high strength concrete with different sizes and hydration retardation were investigated in this study. As a result of the study, properties of hydration temperature and autogenous shrinkage were different according to specimen size and hydration retardation. However, there was a close relationship between hydration temperature and autogenous shrinkage at an early age, especially between HHV and ASV as linear slopes of the sections where hydration temperature and autogenous shrinkage increase rapidly; the higher HHV, the higher ASV and the greater ultimate autogenous shrinkage. And it was found that, among the setting time, bend point and temperature increasing point, they were close relationship each other on cement hydration process.

Structure and physical properties of the earth crustal material in the middle of Korean Peninsula : A study on the prescription of standard test by mortar-bar method (한반도 중부권 지각물질의 구조와 물성연구 : 콘크리트 공시체에 의한 표준시험 규정에 대하여)

  • 정진곤;유신애
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.193-200
    • /
    • 1995
  • It has been well known that the alkali-aggregate reaction between the aggregates and cement paste is one of the reasons of a concrete siructre expansion. Because of a serious demage on the concrete stnicture from the expansion, in many countries, the safety of the materials is checked in laboratory by mortar-bar test and the upper limit of expansion in length is 0.1%. The prescriptions are presented in the ASTM C227 and 490 of U.S. which has been international currency and in the KS Handbook F2503, F2546 and L5107 of Korea published by Korean Standards Association. Both of the prescriptions are almost same in their contents. Actually, in the process of preparing and measuring the mortar-bar according to the prescription mentioned above, it seems that there are no problems for its own purpose but a few points are found to be improved upon the methods to increase the accuracy for laboratory work as follows. 1. The prescription of blending ratio(aggregate, cement and water) should be noted by volume not by weight. 2. It is unreasonable to measure the initial length of mortar bars after 24$\pm$2 hours at once regardless the kind of aggregates. 3. It may bring about errors in calculating the expansion ratio under the condition of the denominator value fixed as 254mm. 4. The measuring methods of specific gravity are selected according to the purposes but the pure specific gravity displays the highest accuracy among them.

  • PDF

Characterization of Concrete Composites with Mixed Plastic Waste Aggregates (복합 폐플라스틱 골재 치환 콘크리트의 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.317-324
    • /
    • 2020
  • Plastic wastes generated from domestic waste are separated by mixed discharge with foreign substances, and the cost of the separation and screening process increases, so recycling is relatively low. In this study, as a fundamental study for recycling mixed plastic wastes generated from domestic waste into concrete aggregates, changes in concrete properties according to the plastic waste types and the substitution rate were evaluated experimentally. The mixed plastic waste aggregate(MPWA) was found to have a lower density and a higher absorption rate compared to the coarse aggregate with good particle size distribution. On the other hand, the single plastic waste aggregate(SPWA) was composed of particles of uniform size, and both the density and the absorption rate were lower than that of the fin e aggregate. It was found that the MPWA substitution concrete did not cause a material separation phenomenon due to a relatively good particle size distribution even with the largest amount of plastic waste substitution, and the amount of air flow increased little. The compressive strength and flexural strength of the PWA substitution concrete decreased as the amount of substitution of the PWA increased due to the low strength of the PWA, the suppression of the cement hydration reaction due to hydrophobicity, and the low adhesion between the PWA and the cement paste. It was found that the degree of deterioration in compressive strength and flexural strength of concrete substituted with MPWA having good particle size distribution was relatively small.

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

Evaluation of Hydration Heat of Mass Concrete with Capsulated Slurry PCM and FEM Study for Analyzing Thermal Crack (캡슐형 슬러리 PCM을 혼입한 매스콘크리트의 수화열 평가 및 온도균열 FEM 해석에 관한 연구)

  • Park, ChangGun;Kim, Bo-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2014
  • The purpose of this study is to investigate the effect of capsulated slurry phase change material (PCM) on the thermal crack in mass concrete by experimental work and FEM analysis. In this study, three conditions of samples were prepared for evaluating the level of hydration heat, i.e., a material condition, a cement paste condition and a concrete condition. Also, a compressive strength test was conducted for FEM inverse analysis. Based on the results of the experiment, exothermic function coefficients of concrete with encapsulated slurry PCM were deducted by the inverse analysis. After that, they applied to FEM analysis of the mass scale concrete structures. From the results of this experiment, $31^{\circ}C$ capsulated slurry PCM had no super cooling phenomenon in the material condition. In the cement condition, hydration heat decreased by 34.61J when PCM of 1g was mixed. In the concrete condition, PCM of 6% was deducted as the best level in hydration heat absorption. In FEM inverse analysis, rate coefficient of reaction gradually decreased when PCM mixing ratio increased. But, temperature-rise coefficient increased when PCM mixing ratio exceeded 6%. For the inversed exothermic function coefficients applying to large scale concrete structures, a thermal cracking index increased by 0.05 when PCM of 1% was mixed.

Corrosion of Steel in Blended Concretes Containing OPC, PFA, GGBS and SF

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn Chu
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.171-176
    • /
    • 2009
  • The chloride threshold level (CTL) in mixed concrete containing, ordinary Portland cement (OPC), pulverized fuel ash (PFA) ground granulated blast furnace slag (GGBS), and silica fume (SF) is important for study on corrosion of reinforced concrete structures. The CTL is defined as a critical content of chloride at the steel depth of the steel which causes the breakdown of the passive film. The criterion of the CTL represented by total chloride content has been used due to convenience and practicality. In order to demonstrate a relationship between the CTL by total chloride content and the CTL by free chloride content, corrosion test and chloride binding capacity test were carried out. In corrosion test, Mortar specimens were cast using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.0, 0.2, 0.4, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder. All specimens were cured 28 days, and then the corrosion rate was measured by the Tafel's extrapolation method. In chloride binding capacity, paste specimens were casting using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binders. At 28days, solution mixed with the powder of ground specimens was used to measure binding capacity. All specimens of both experiments were wrapped in polythene film to avoid leaching out of chloride and hydroxyl ions. As a result, the CTL by total chloride content ranged from 0.36-1.44% by weight of binders and the CTL by free chloride content ranged from 0.14-0.96%. Accordingly, the difference was ranging, from 0.22 to 0.48% by weight of binder. The order of difference for binder is OPC > 10% SF > 30% PFA > 60% GGBS.

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.

Effects of Numerical Modeling on Concrete Heterogeneity (콘크리트 비균질성에 대한 수치모델의 영향)

  • Rhee, In-Kyu;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.189-198
    • /
    • 2006
  • The composition of most engineering materials is heterogeneous at some degree. It is simply a question of scale at which the level of heterogeneity becomes apparent. In the case of cementitious granular materials such as concrete the heterogeneity appears at the mesoscale where it is comprised of aggregate particles, a hardened cement paste and voids. Since it is difficult to consider each separate particle in the topological description explicitly, numerical models of the meso-structure are normally confined to two-phase matrix particle composites in which only the larger inclusions are accounted for. 2-D and 3-D concrete blocks(Representative Volume Element, RVE) are used to simulating heterogeneous concrete meso-structures in the form of aggregates in the hardened mortar with nearly zero-thickness linear or planar interfaces. The numerical sensitivity of these meso-structures are Investigated with respect to the different morphologies of heterogeneity and the different level of coupling constant among fracture mode I, II and III. In addition, a numerically homogenized concrete block in 3-D using Hashin-Shtrikman variational bounds provides an evidence of the effective cracking paths which are quite different with those of heterogenous concrete block. However, their average force-displacement relationship show a pretty close match each other.